

DS26556 4-Port Cell/Packet Over T1/E1/J1 Transceiver

www.maxim-ic.com

GENERAL DESCRIPTION

The DS26556 is a quad, software-selectable T1, E1, or J1 transceiver with a cell/packet/TDM interface. It is composed of four framer/formatters + LIUs, and a UTOPIA (cell), POS-PHY™ (packet), and TDM backplane interface. Each framer has an HDLC controller that can be mapped to any DS0 or FDL (T1)/Sa (E1) bit. The DS26556 also includes full-featured BERT devices per port, and an internal clock adapter useful for creating synchronous, high-frequency backplane timing. The DS26556 is controlled through an 8-bit parallel port that can be configured for nonmultiplexed Intel or Motorola operation.

APPLICATIONS

Routers IMA Add-Drop Multiplexers ATM

DSLAMs WAN Interface

PBXs Customer-Premise

Switches Equipment

Central Office Equipment

POS-PHY and POS-PHY Level 3 are trademarks of PMC-Sierra, Inc.

FEATURES

- Four Independent, Full-Featured T1/E1/J1 Transceivers
- UTOPIA 2 and 3 Cell Interface
- POS-PHY 2 and 3 Packet Interface
- TDM Backplane Supports TDM Bus Rates from 1.544MHz to 16.384MHz
- Alarm Detection and Insertion
- Full-Featured BERT for Each Port
- AMI, B8ZS, HDB3, NRZ Line Coding
- Transmit Synchronizer
- BOC Message Controller (T1)
- One HDLC Controller per Framer
- Performance Monitor Counters
- RAI-Cl and AIS-Cl Support
- Internal Clock Generator (CLAD) Supplies 16.384MHz, 8.192MHz, 4.096MHz, or 2.048MHz
- JTAG Test Port
- Single 3.3V Supply with 5V Tolerant Inputs
- 17mm x 17mm, 256-Pin BGA (1.00mm Pitch)

ORDERING INFORMATION

PART	TEMP RANGE	PIN- PACKAGE
DS26556	0°C to +70°C	256 BGA
DS26556N	-40°C to +85°C	256 BGA

Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device may be simultaneously available through various sales channels. For information about device errata, click here: www.maxim-ic.com/errata.

1 REV: 012105

TABLE OF CONTENTS

1	В	BLOCK DIAGRAMS	9
2	F	FEATURES .	10
	2.1	Framer/LIU	10
	2	2.1.1 Framer/Formatter	
	2	2.1.2 Line Interface (LIU)	10
		2.1.3 Clock Synthesizer	
		2.1.4 HDLC Controllers	
		2.1.5 Test and Diagnostics	
	2.2	CELL/PACKET INTERFACE	
		2.2.2 ATM	
		2.2.3 HDLC	
	2.3		
3	F		14
			18
4			
5			19
	5.1		
	5.2	DETAILED PIN LIST	22
6	D	DEVICE CONFIGURATION	30
7	F	FUNCTIONAL PIN TIMING	31
	7.1		
	7.2		
	7.3		
		7.3.1 UTOPIA Level 2 Functional Timing	
		7.3.2 UTOPIA Level 3 Functional Timing	
		7.3.3 POS-PHY Level 2 Functional Timing	
	7	7.3.4 POS-PHY Level 3 Functional Timing	
8	F	FUNCTIONAL DESCRIPTION	47
	8.1	Cell / Packet Interface Description	47
		3.1.1 Reset Descriptions	
		3.1.2 BIT / BYTE Ordering	
	8.2		
		3.2.1 General Description	
		3.2.2 Features	
	8.3		
		3.3.1 General Description	
	8	3.3.2 Features	5 2
		3.3.3 Transmit Cell/Packet Processor	53
		3.3.4 Receive Cell/Packet Processor	
		3.3.5 Cell Processor	
		3.3.6 Packet Processor	
		3.3.8 System Loopback	
	8.4		
		3.4.1 T1 Loopbacks	
		3.4.2 H.100 (CT Bus) Compatibility	64
		3.4.3 T1 Receive Status and Information	
		3.4.4 Receive AIS-CI and RAI-CI Detection	
		3.4.5 T1 Receive-Side Digital Milliwatt Code Generation	
		3.4.6 T1 Error Count Registers	
		3.4.8 Software Signaling	
		3.4.9 Hardware Signaling	
	8	3.4.10 Signaling Re-insertion	
		3.4.11 Receive Signaling Freeze	69
		3.4.12 Fractional T1 Support (Gapped-Clock Mode)	
	- 8	3.4.13 T1 Bit-Oriented Code (BOC) Controller	69

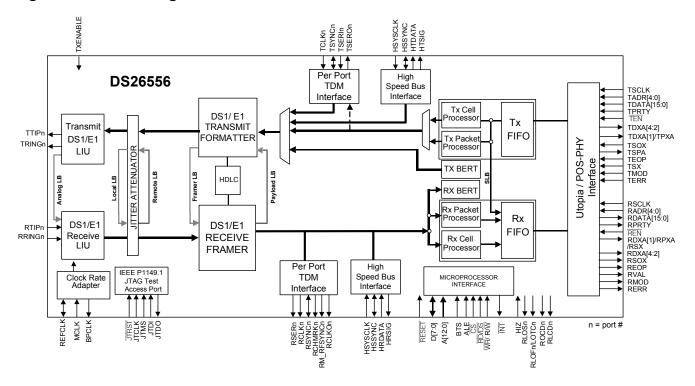
8.4.14	Receive SLC-96 Operation	69
	Receive FDL	69
8.4.16	Programmable In-Band Loop-Code Detection	70
8.4.17	Receive HDLC Controller	
8.4.18	Receive HDLC Controller Example	
	TRANSMIT FORMATTER DESCRIPTION AND OPERATION	
8.5.1	T1 Per-Channel Loopback	
8.5.2	T1 Transmit DS0 Monitoring Function	
8.5.3	T1 Transmit Signaling Operation	
8.5.4	T1 Transmit Per-Channel Idle Code Insertion	
8.5.5	T1 Transmit Channel Mark Registers	
8.5.6		
8.5.7	Fractional T1 Support (Gapped Clock Mode)	د / 70
8.5.8	T1 Transmit FDL	
8.5.9	Transmit SLC-96 Operation	
8.5.10	Transmit HDLC Controller	
8.5.11	HDLC Transmit Example	
8.5.12	Programmable In-Band Loop-Code Generator	
8.5.13	Interfacing the T1 Tx Formatter to the BERT	76
8.5.14	T1 Transmit Synchronizer	76
8.6 E1	RECEIVE FRAMER DESCRIPTION AND OPERATION	
8.6.1	H.100 (CT Bus) Compatibility	76
8.6.2	E1 Error Count Registers	77
8.6.3	DS0 Monitoring Function	
8.6.4	E1 Receive Signaling Operation	
8.6.5	Fractional E1 Support (Gapped Clock Mode)	
8.6.6	Additional Sa-Bit and Si-Bit Receive Operation (E1 Mode)	
8.6.7	HDLC Overhead Control Receive Example	
8.6.8	Interfacing the E1 Rx Framer to the BERT	
8.6.9	E1 Transmit Formatter Description and Operation	
8.6.10	Automatic Alarm Generation	
8.6.11	G.706 Intermediate CRC-4 Updating (E1 Mode Only)	81
8.6.12	E1 Transmit DS0 Monitoring Function	
8.6.13	E1 Transmit Signaling Operation	
8.6.14		
	Fractional E1 Support (Gapped Clock Mode)	ده
8.6.15		
	E1 Transmit HDLC Controller	
	E1 HDLC Transmit Example	
	Interfacing the E1 Transmitter to the BERT	
	E1 Transmit Synchronizer	85
9 LINE II	NTERFACE UNIT (LIU)	86
	TRANSMITTER	86
	Pulse Shapes	
9.1.2	Transmit Termination	
9.1.3	Power-Down and High-Z	86
9.1.4	Transmit All Ones	86
9.1.5	Driver Fail Monitor	
	DEIVER	
9.2.1	Receiver Monitor Mode	
9.2.2	Peak Detector and Slicer	
9.2.3	Clock and Data Recovery	90
9.2.4	Receive Level Indicator	90
9.2.5	Loss of Signal	
	TER ATTENUATOR	
	LOOPBACKS	
9.4.1	Analog Loopback	
9.4.2	Local Loopback	
9.4.3	Remote Loopback	
10 OVER	ALL REGISTER MAP	95
11 REGIS	TER MAPS AND DESCRIPTIONS	97
	DBAL REGISTERS	
11.1.1	Global Control Registers	97

111 115 120 127
113 115 120 127
115 120 127 133
120 127 133
127 133
133
1/19
148
163
163
165
168
171
172
173
189
190
191
192
193
196
197
198
199
200
201
202
208
214
216
219
219
219
219 220 225
219 220 225
219 220 225 228

11.7 E1 Transmit framer	293
11.7.1 Transmit Master Mode Register	296
11.7.2 Interrupt Information Registers	
11.7.3 E1 Transmit Control Registers	
11.7.4 E1 Transmit Status and Information	
11.7.5 Per-Channel Loopback	
11.7.6 E1 Transmit DS0 Monitoring Function	
11.7.8 E1 Transmit Per-Channel Idle Code Insertion	
11.7.9 E1 Transmit Channel Mark Registers	
11.7.10 Fractional E1 Support (Gapped Clock Mode)	
11.7.11 Additional (Sa) and International (Si) Bit Operation (E1 Mode)	
11.7.12 E1 Transmit HDLC Controller	
11.7.13 Interfacing the E1 Transmitter to the BERT	
11.7.14 E1 Transmit Synchronizer	
12 LINE INTERFACE UNIT (LIU)	327
12.1 LIU REGISTERS	328
13 BIT ERROR RATE TESTER (BERT)	335
13.1 BERT REGISTER BIT DESCRIPTIONS	336
14 JTAG BOUNDARY SCAN ARCHITECTURE AND TEST ACCESS P	ORT 342
14.1 TAP CONTROLLER STATE MACHINE	343
14.2 INSTRUCTION REGISTER	
14.3 Test Registers	
15 PIN ASSIGNMENT	347
16 PACKAGE MECHANICAL INFORMATION	348
17 PACKAGE THERMAL INFORMATION	349
18 ABSOLUTE MAXIMUM RATINGS	350
19 AC TIMING	351
19.1 Transmit TDM Port AC Characteristics	
19.2 RECEIVE TDM PORT AC CHARACTERISTICS	
19.3 HIGH SPEED PORT AC CHARACTERISTICS	
19.4 SYSTEM INTERFACE AC CHARACTERISTICS	
19.5 MICROPROCESSOR BUS AC CHARACTERISTICS	358
19.6 JTAG Interface Timing	361
20 REVISION CHANGE HISTORY	362

LIST OF FIGURES

Figure 1-1 Block Diagram	9
Figure 2-1 Backplane Interface Diagram For Port 1 of 4	
Figure 3-1 ATM Over 4 Ports	
Figure 3-2 IP Over 4 T1/E1 Ports	
Figure 3-3 IP Over 2 Ports, TDM Over 2 Ports	
Figure 3-4 ATM Over 2 Ports, 2 Ports Combined Into High Speed TDM	14
Figure 3-5 Fractional ATM Over 4 Ports With Fractional TDM Access to Each Port	15
Figure 3-6 8 Port High Speed TDM Bus	
Figure 7-1 Receive TDM Signals	
Figure 7-2 Receive TDM Signals, Details	
Figure 7-3 Transmit TDM Signals	
Figure 7-4 Transmit TDM Signals, Details	
Figure 7-5 Two Port High Speed TDM Bus	
Figure 7-6 Four Port High Speed TDM Bus	
Figure 7-7 UTOPIA Level 2 Transmit Cell Transfer Direct Mode	
Figure 7-8 UTOPIA Level 2 Receive Cell Transfer Direct Mode	
Figure 7-9 UTOPIA Level 2 Transmit Multiple Cell Transfer Polled Mode	
Figure 7-10 UTOPIA Level 2 Receive Multiple Cell Transfer Polled Mode	
Figure 7-10 UTOPIA Level 2 Receive Unexpected Multiple Cell Transfer	
Figure 7-12 UTOPIA Level 3 Transmit Multiple Cell Transfer Direct Mode	
Figure 7-13 UTOPIA Level 3 Transmit Multiple Cell Transfer Polled Mode	
Figure 7-13 UTOPIA Level 3 Receive Multiple Cell Transfer Direct Mode	
Figure 7-14 UTOPIA Level 3 Receive Multiple Cell Transfer Polled Mode	
Figure 7-16 Transmit Multiple Packet Transfer to Different PHY ports (direct status mode)	
Figure 7-10 Transfill Multiple Packet Transfer to Different PTT ports (direct status filode) Figure 7-17 POS-PHY Level 2 Receive Multiple Packet Transfer from Different PHY Ports/Devices (di	
mode)	
Figure 7-18 POS-PHY Level 2 Transmit Multiple Packet Transfer to Different PHY Ports (polled status mo	
Figure 7-19 POS-PHY Level 2 Receive Multiple Packet Transfer (polled status mode)	
Figure 7-20 POS-PHY Level 3 Transmit Multiple Packet Transfer In-Band Addressing	40
Figure 7-21 POS-PHY Level 3 Receive Multiple Packet Transfer In-Band Addressing	
Figure 8-1 Normal Packet Format in 16-Bit Mode	
Figure 8-2 Byte Reordered Packet Format in 16-Bit Mode	
Figure 8-4 Receive DSS Scrambler Synchronization State Diagram	
Figure 8-5 Cell Delineation State Diagram	
Figure 8-6 HEC Error Monitoring State Diagram	
Figure 8-7 Cell Format for 53-Byte Cell With 16-Bit Data Bus	58
Figure 8-8 Cell Format for 52-Byte Cell With 16-Bit Data Bus	
Figure 8-9 Remote Loopback	
Figure 8-10 Payload Loopback	
Figure 8-11 Framer Loopback	
Figure 8-12 HSSYNC Input in H.100 (CT Bus) Mode	
Figure 8-13 Receive HDLC Example	
Figure 8-14 HDLC Message Transmit Example	
Figure 8-15 HSSYNC Input in H.100 (CT Bus) Mode	
Figure 8-16 Receive HDLC Example	
Figure 8-17 CRC Update Flow Diagram	
Figure 8-18 Time Slot Numbering Schemes	
Figure 8-19 E1 HDLC Message Transmit Example	
Figure 9-1 T1/J1 Transmit Pulse Templates	
Figure 9-2 E1 Transmit Pulse Templates	
Figure 9-3 Typical Monitor Operation	
Figure 9-4 Jitter Tolerance	
Figure 9-5 Jitter Attenuation	
Figure 11-1 Transmit FIFO Register Map	
Figure 11-2 E1 Sync/Resync Criteria	
Figure 14-1 JTAG Functional Block Diagram	
Figure 14-2 Tap Controller State Diagram	
Figure 15-1 DS26556 Pin Assignments—256 Jead BGA	347


Figure 19-1 Clock Period and Duty Cycle Definitions	
Figure 19-2 Rise Time, Fall Time, and Jitter Definitions	
Figure 19-3 Hold, Setup, and Delay Definitions (Rising Clock Edge)	
Figure 19-4 Hold, Setup, and Delay Definitions (Falling Clock Edge)	
Figure 19-5 To/From High-Z Delay Definitions (Rising Clock Edge)	
Figure 19-6 To/From High-Z Delay Definitions (Falling Clock Edge)	
Figure 19-7 Intel Bus Read Timing (BTS = 0)	
Figure 19-8 Intel Bus Write Timing (BTS = 0)	
Figure 19-9 Motorola Bus Read Timing (BTS = 1)	
Figure 19-10 Motorola Bus Write Timing (BTS = 1)	
Figure 19-11 JTAG Interface Timing Diagram	

LIST OF TABLES

Table 3-1 Framer LIU Compliance	16
Table 3-2 Cell/Packet Interface Compliance	17
Table 5-1 Short Pin List	19
Table 5-2 Pin Descriptions	22
Table 8-1 T1 Alarm Criteria	66
Table 8-2 E1 Line Code Violation Counting Options	78
Table 9-1 Loss Criteria T1.231, G.775 and ETSI 300 233 Specifications	91
Table 10-1 Overall Register Map	95
Table 10-2 Per Port Register Map	96
Table 11-1 Global Register Map	97
Table 11-2 General Cell / Packet Register Map	111
Table 11-3 Transmit Cell Processor Register Map	120
Table 11-4 Transmit Packet Processor Register Map	127
Table 11-5 Receive Cell Processor Register Map	
Table 11-6 Receive Packet Processor Register Map	148
Table 11-7 Receive FIFO Register Map	
Table 11-8 Transmit System Interface Register Map	
Table 11-9 Receive System Interface Register Map	
Table 11-10 T1 Receive Framer Register Map	168
Table 11-11 T1 Line-Code Violation Counting Options	
Table 11-12 T1 Path-Code Violation Counting Arrangements	190
Table 11-13 T1 Frame Out-of-Sync Counting Arrangements	
Table 11-14 T1 Transmit Framer Register Map	
Table 11-15 E1 Receive Framer Register Map	
Table 11-16 E1 Alarm Criteria	
Table 11-17 E1 Line Code Violation Counting Options	
Table 11-18 E1 Transmit Framer Register Map	
Table 11-19 E1 Transmit Signaling - CAS Format	
Table 11-20 E1 Transmit Signaling – CCS Format	
Table 12-1 LIU Register Map	
Table 12-2 Internal Transmit Termination Select	
Table 12-3 E1 Transmit Pulse Shape Selection	
Table 12-4 T1/J1 Transmit Pulse Shape Selection	
Table 12-5 Receive Level Indication	
Table 12-6 Internal Receive Termination Selection	
Table 12-7 Monitor Gain and Maximum Receive Sensitivity Selection	
Table 13-1 BERT Register Map	
Table 14-1 Instruction Codes for IEEE 1149.1 Architecture	
Table 14-2 ID Code Structure	
Table 17-1 Thermal Characteristics	349
Table 18-1 Absolute Maximum Ratings	
Table 18-2 Recommended DC Operating Conditions	
Table 18-3 Capacitance	
Table 18-4 DC Operating Characteristics	
Table 19-1 Transmit TDM Port Timing	
Table 19-2 Receive TDM Port Timing	
Table 19-3 Receive TDM Port Timing	
Table 19-4 System Interface Level 2 Timing	
Table 19-5 System Interface Level 3 Timing	
Table 19-6 AC Characteristics—Microprocessor Bus Timing	
Table 19-7 JTAG Interface Timing	361

1 BLOCK DIAGRAMS

Figure 1-1 Block Diagram

2 FEATURES

2.1 Framer/LIU

2.1.1 Framer/Formatter

- Fully Independent Transmit and Receive Functionality
- Full Receive and Transmit Path Transparency
- T1 Framing Formats D4 and ESF per T1.403, and Expanded SLC-96 Support (TR-TSY-008)
- E1 FAS Framing and CRC-4 Multiframe per G.704/G.706 and G.732 CAS Multiframe
- Detailed Alarm and Status Reporting with Optional Interrupt Support
- Large Path and Line Error Counters for

T1: BPV, CV, CRC6, and Framing Bit Errors

E1: BPV, CV, CRC4, E-Bit, and Frame Alignment Errors

Timed or Manual Update Modes

DS1 Idle Code Generation on a Per-Channel Basis in Both Transmit and Receive Paths

User-Defined

Digital Milliwatt

- ANSI T1.403-1998 Support
- G.965 V5.2 Link Detect
- Ability to Monitor One DS0 Channel in Both the Transmit and Receive Paths
- In-Band Repeating Pattern Generators and Detectors

Three Independent Detectors

Patterns from 1 to 8 bits or 16 bits in Length

- Bit Oriented Code (BOC) Support
- Signaling Support

Software based

Interrupt Generated on Change of Signaling Data

- Hardware Pins Provided to Indicate Loss of Frame, Loss of Signal and Loss-of-Transmit Clock (LOTC)
- Automatic RAI Generation to ETS 300 011 Specifications
- RAI-CI and AIS-CI Support
- Expanded Access to Sa and Si Bits
- Option to Extend Carrier Loss Criteria to a 1ms Period as per ETS 300 233
- Japanese J1 Support

Ability to Calculate and Check CRC6 According to the Japanese Standard

Ability to Generate Yellow Alarm According to the Japanese Standard

2.1.2 Line Interface (LIU)

- Requires only a 2.048MHz master clock for both E1 and T1 operation with the option to use 1.544MHz for T1 operation
- Fully software configurable
- Short-haul and long-haul applications
- Automatic receive sensitivity adjustments
- Ranges include 0 to 43dB or 0 to 12dB for E1 applications and 0 to 13dB or 0 to 36dB for T1 applications
- Receive level indication in 2.5dB steps from

-42.5dB to -2.5dB

- Internal receive termination option for 75, 100, and 120Ω lines
- Internal transmit termination option for 75, 100, and 120Ω lines
- Monitor application gain settings of 20dB, 26dB, and 32dB
- G.703 receive synchronization-signal mode
- Flexible transmit waveform generation
- T1 DSX-1 line build-outs
- T1 CSU line build-outs of -7.5dB, -15dB, and -22.5dB
- E1 waveforms include G.703 waveshapes for both 75Ω coax and 120Ω twisted cables
- AIS generation independent of loopbacks
- Alternating ones and zeros generation
- Square-wave output
- Open-drain output option
- NRZ format option

- Transmitter power-down
- Transmitter 50mA short-circuit limiter with current-limit-exceeded indication
- Transmit open-circuit-detected indication

2.1.3 Clock Synthesizer

- Output frequencies include 2.048MHz, 4.096MHz, 8.192MHz, and 16.384MHz
- Derived from recovered receive clock

2.1.4 HDLC Controllers

- HDLC Engine (One per Framer):
 - Independent 64-byte Rx and Tx Buffers with Interrupt Support
 - Access FDL, Sa, or Single DS0 Channel
 - Compatible with Polled or Interrupt Driven Environments

2.1.5 Test and Diagnostics

- Full-Featured BERTs
 - Programmable PRBS pattern The Pseudo Random Bit Sequence (PRBS) polynomial $(x^n + x^y + 1)$ and seed are programmable (length n = 1 to 32, tap y = 1 to n 1, and seed = 0 to 2^n 1).
 - Programmable repetitive pattern The repetitive pattern length and pattern are programmable (the length n = 1 32 and pattern = $0 2^n 1$).
 - 24-bit error count and 32-bit bit count registers
 - Programmable bit error insertion Errors can be inserted individually, on a pin transition, or at a specific rate. The rate $1/10^n$ is programmable (n = 1 to 7).
 - Pattern synchronization at a 10⁻³ BER Pattern synchronization will be achieved even in the presence of a random Bit Error Rate (BER) of 10⁻³.
- BPV Insertion
- F-Bit Corruption for Line Testing
- Loopbacks

Remote

Local

Per-Channel

■ IEEE 1149.1 Support

2.2 Cell/Packet Interface

2.2.1 General

- Programmable system interface type When performing cell mapping/demapping, the system interface can be programmed as a UTOPIA Level 2 Bus or a UTOPIA Level 3 Bus or a POS-PHY Level 2 or Level 3 Bus. When performing packet mapping/demapping, the system interface can be programmed as a POS-PHY Level 2 Bus or a POS-PHY Level 3 Bus.
- Selectable system interface bus width The data bus can be a 16-bit or 8-bit bus.
- Supports clock speeds up to 52 MHz.
- Supports multiple ports on the system interface Each line has its own port address for access via the system interface.
- **Programmable system interface port address** The address assigned to each system interface port is programmable to allow multiple devices to operate on the same bus.
- Supports per port system loopback Each port has can be placed in system loopback which causes cells/packets from the transmit FIFO to looped back to the receive FIFO.
- System interface bit/byte reordering In 16-bit mode the order of the bytes as transferred across the system interface is programmable, i.e., the first byte received/transmitted can be transferred in ([15:8]) or [7:0]. The order of the bits as transferred across the system interface is programmable on a per port basis, i.e., the first bit received/transmitted can be transferred in bit position 7 (15 and 7) or bit position 0 (8 and 0).

2.2.2 ATM

- **Programmable HEC insertion and extraction** The transmit side can be programmed to accept cells from the system interface that do or do not contain a HEC byte. If cells are transferred without a HEC byte, the HEC byte will be computed and inserted. If cells are transferred with a HEC byte, then the transferred HEC byte can be programmed to be passed through or overwritten with a newly calculated HEC. The receive side can be programmed to send cells to the system interface that do or don't contain the HEC byte.
- **Programmable errored cell insertion** An HEC error mask can be programmed for insertion of a single or multiple errors individually or continuously at a programmable rate.
- **Programmable transmit cell synchronization** The transmit data line can be provisioned to be bit synchronous, byte synchronous, or cell synchronous.
- **HEC** based cell delineation Cell delineation is determined from the HEC.
- **Programmable header cell pass-through** Receive cell filtering can pass-through only those cells that matching a programmable header value.
- Selectable idle/unassigned/invalid/programmable header cell padding and filtering Transmit cell padding can be programmed for idle cell or programmable header cell padding. The padded cell payload byte contents are also programmable. Receive cell filtering can be programmed for any combination of idle cell, unassigned cell, invalid cell, or programmable header cell filtering. Or, all cell filtering can be disabled.
- Optional header error correction Receive side single bit header error correction can enabled.
- **Separate corrected and uncorrected errored cell counts** Separate counts of errored cells containing a corrected HEC error, and cells containing non-corrected HEC errors are kept.
- Optional HEC uncorrected errored cell filtering Uncorrected errored cell extraction can be disabled.
- Selectable cell scrambling/descrambling Cell scrambling and/or descrambling can be disabled. The scrambling can be a self-synchronous scrambler ($x^{43} + 1$) over the payload only, a self-synchronous scrambler over the entire cell, or a Distributed Sample Scrambler ($x^{31} + x^{28} + 1$).
- Optional HEC calculation coset polynomial addition The performance of coset polynomial addition during HEC calculation can be disabled.

2.2.3 HDLC

- **Programmable FCS insertion and extraction** The transmit side can be programmed to accept packets from the system interface that do or don't contain FCS bytes. If packets are transferred without FCS bytes, the FCS will be computed and appended to the packet. If packets are transferred with FCS bytes, then the FCS can be programmed to be passed through or overwritten with a newly calculated FCS. The receive side can be programmed to send packets to the system interface that do or don't contain FCS bytes.
- **Programmable transmit packet synchronization** The transmit data line can be provisioned to be bit synchronous or byte synchronous.
- Programmable FCS type The FCS can be programmed to be a 16-bit FCS or a 32-bit FCS.
- **Supports FCS error insertion** FCS error insertion can be programmed for insertion of errors individually or continuously at a programmable rate.
- Supports bit or byte stuffing/destuffing The bit or byte synchronous mode determines the bit or byte stuffing/destuffing.
- **Programmable packet size limits** The receive side can be programmed to abort packets over a programmable maximum size or under a programmable minimum size. The maximum packet size allowed is 65,535 bytes.
- Selectable packet scrambling/descrambling Packet scrambling and/or descrambling can be disabled.
- Separate FCS errored packet and aborted packet counts Separate counts of aborted packets, size violation packets, and FCS errored packets are kept.
- Optional errored packet filtering Errored packet extraction can be disabled
- **Programmable inter-frame fill** The transmit inter-frame fill value is programmable.

2.3 Control Port

- 8-Bit Parallel Control Port
- Intel or Motorola Nonmultiplexed Support
- Flexible Status Registers Support Polled, Interrupt, or Hybrid Program Environments
- Software Reset Supported
- Hardware Reset Pin

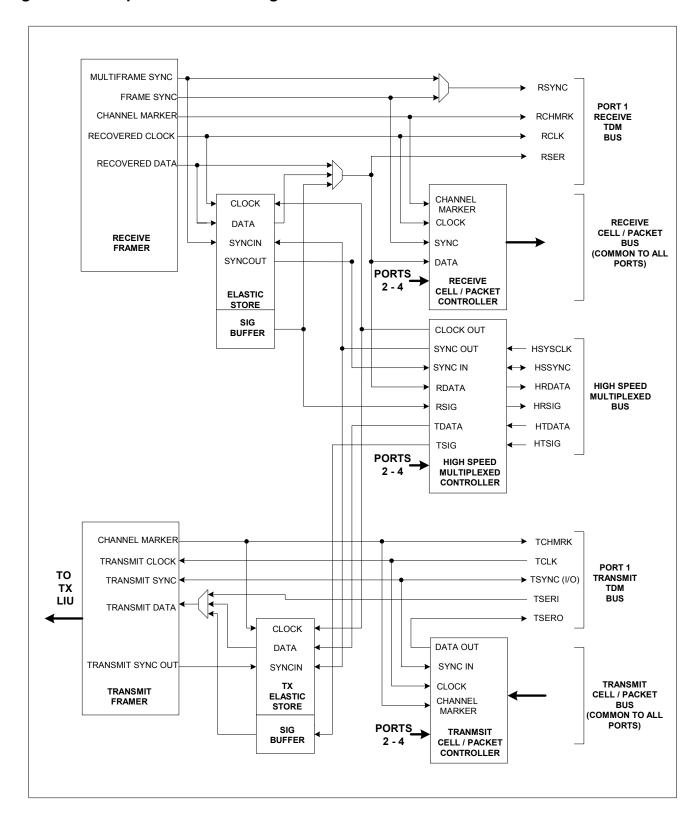


Figure 2-1 Backplane Interface Diagram For Port 1 of 4

3 BACKPLANE CONFIGURATION SCENERIOS

Figure 3-1 ATM Over 4 Ports

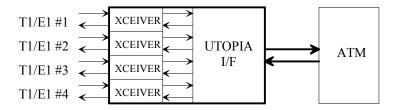


Figure 3-2 IP Over 4 T1/E1 Ports

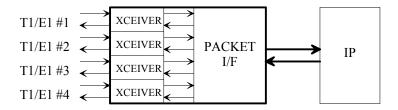


Figure 3-3 IP Over 2 Ports, TDM Over 2 Ports

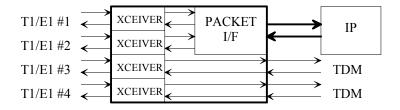


Figure 3-4 ATM Over 2 Ports, 2 Ports Combined Into High Speed TDM

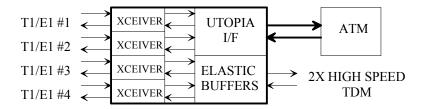


Figure 3-5 Fractional ATM Over 4 Ports With Fractional TDM Access to Each Port

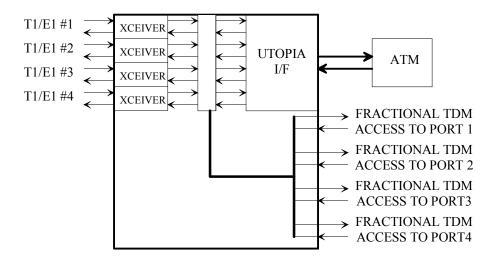
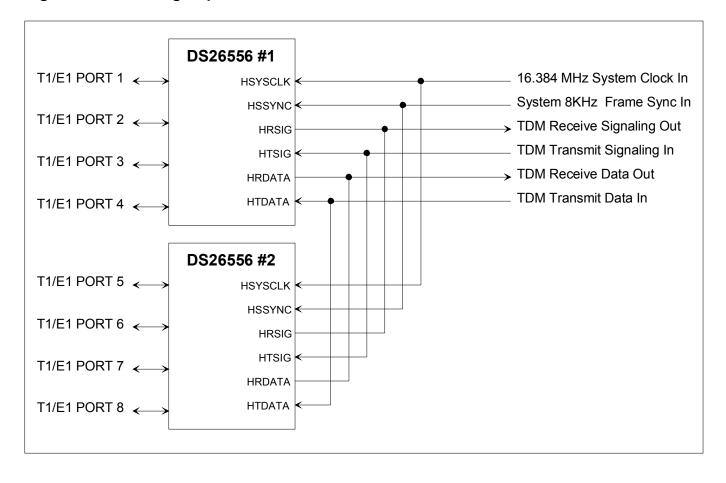



Figure 3-6 8 Port High Speed TDM Bus

Standards Compliance

The DS26556 conforms to the applicable parts of the following standards.

Table 3-1 Framer LIU Compliance

SPECIFICATION	TITLE		
ANSI			
T1.102-1993	Digital Hierarchy—Electrical Interfaces		
T1.107-1995	Digital Hierarchy—Formats Specification		
T1.231-1997	Digital Hierarchy—Layer 1 In-Service Digital Transmission Performance Monitoring		
T1.403-1999	Network and Customer Installation Interfaces—DS1 Electrical Interface		
AT&T			
TR54016	Requirements for Interfacing Digital Terminal Equipment to Services Employing the Extended Superframe Format		
TR62411	High Capacity Digital Service Channel Interface Specification		
ITU			
G.704, 1995	Synchronous Frame Structures used at 1544, 6312, 2048, 8488, and 44,736 kbit/s Hierarchical Levels		
G.706, 1991	Frame Alignment and Cyclic Redundancy Check (CRC) Procedures Relating to Basic Frame Structures Defined in Recommendation G.704		
G.732, 1993	Characteristics of Primary PCM Multiplex Equipment Operating at 2048 kbit/s		
G.736, 1993	Characteristics of a synchronous digital multiplex equipment operating at 2048 kbit/s		
G.775, 1994	Loss Of Signal (LOS) and Alarm Indication Signal (AIS) Defect Detection and Clearance Criteria		
G.823, 1993	The Control of Jitter and Wander Within Digital Networks Which are Based on the 2048kbps Hierarchy		
1.431, 1993	Primary Rate User-Network Interface—Layer 1 Specification		
O.151, 1992	Error Performance Measuring Equipment Operating at the Primary Rate and Above		
O.161, 1988	In-service code violation monitors for digital systems		
ETSI			
ETS 300 011, 1998	Integrated Services Digital Network (ISDN); Primary rate User-Network Interface (UNI); Part 1: Layer 1 specification		
ETS 300 166, 1993	Transmission and multiplexing; Physical/electrical characteristics of hierarchical digital interfaces for equipment using the 2048 kbit/s-based plesiochronous or synchronous digital hierarchies		
ETS 300 233, 1994	Integrated Services Digital Network (ISDN); Access digital section for ISDN primary rate		
CTR 4, 1995	Integrated Services Digital Network (ISDN); Attachment requirements for terminal equipment to connect to an ISDN using ISDN primary rate access		
1.432, 1993	B-ISDN User-Network Interface—Physical Layer Specification—ITU-T		
CTR 12, 1993	Business Telecommunications (BT); Open Network Provision (ONP) technical requirements; 2048 kbit/s digital unstructured leased lines (D2048U) attachment requirements for terminal equipment interface		
CTR 13, 1996	Business Telecommunications (BTC); 2048 kbit/s digital structured leased lines (D2048S); Attachment requirements for terminal equipment interface		
TTC			
JT-G.704, 1995	Frame Structures on Primary and Secondary Hierarchical Digital Interfaces		
JTI.431, 1995	ISDN Primary Rate User-Network Interface Layer 1 Specification		

Table 3-2 Cell/Packet Interface Compliance

Organization	Number	Title
IETF	RFC 1662	PPP in HDLC-like Framing
	RFC 2615	PPP over SONET
OIF	OIF-SPI3-01.0	System Packet Interface Level 3 (SPI-3): OC-48 System Interface for
		Physical and Link Layer Devices
ATM Forum	af-uni-0010.002	ATM User-Network Interface Specification, Version 3.1
	af-phy-0039.000	UTOPIA Level 2 Physical Layer Interface Specification
	af-bici-0013.003	BISDN Inter Carrier Interface (B-ICI) Specification Version 2.0
		(Integrated)
	af-phy-0136.000	UTOPIA Level 3 Physical Layer Interface Specification
	af-phy-0143.000	Frame-based ATM Interface (Level 3)
ITU-T	1.361	B-ISDN ATM Layer Specification
	1.432.1	B-ISDN User-Network Interface – Physical Layer Specification – General
		Characteristics

4 ACRONYMS AND GLOSSARY

Definition of the terms used in this data sheet:

Acronyms

- ATM Asynchronous Transfer Mode
- CC52 Clear Channel 52 Mbps (STS-1 Clock Rate)
- CLAD Clock Rate Adapter
- CLR Clear Channel Mode
- DSS Distributed Sample Scrambler
- FFRAC Flexible Fractional Mode
- FRM Frame Mode
- HDLC High Level Data Link Control
- SPI-3 same as POS-PHY L3
- TDM Time Division Multiplexing

Glossary

- Cell ATM cell
- Clear Channel A data stream with no framing included
- Fractional Uses only a portion of available payload for data, also known as subrate
- Octet Aligned Byte aligned
- Packet HDLC packet
- Subrate See Fractional

5 PIN DESCRIPTIONS

5.1 Short Pin List

Table 5-1 Short Pin List

			Pin#				
Name	Type	Function	Port	Port	Port	Port	
			4	3	2	1	
	Network Interface Signals						
TTIP[4:1]	0	Transmit Tip	T1	J1	H1	A1	
TRING[4:1]	0	Transmit Ring	T3	J3	H3	A3	
STTIP{4:1]	0	Secondary Transmit Tip	T2	J2	H2	A2	
STRING[4:1]	0	Secondary Transmit Ring	R3	K3	G3	B3	
RTIP[4:1]		Receive Tip	P1	L1	F1	C1	
RRING[4:1]		Receive Ring	P2	L2	F2	C2	
TXENABLE		Transmit High Impedance Enable		M	15		
		Backplane TDM Signals					
TSERO[4:1]	0	Transmit Serial Data Out	M6	P6	D6	D5	
TSERI[4:1]		Transmit Serial Data In	R4	T6	F3	A4	
TCLK[4:1]		Transmit Clock	P4	N3	A6	C5	
TSYNC[4:1]	I/O	Transmit Sync	P5	R6	E3	C3	
TCHMRK[4:1]	0	Transmit Channel Marker	N5	P3	B6	F6	
RSER[4:1]	0	Receive Serial Data	T5	N7	B5	E5	
RCLKO[4:1]	0	Receive Clock Out	L7	M7	E6	C4	
RSYNC[4:1]	0	Receive Sync	R5	L8	A5	D3	
RM_RFSYNC[4:1]	0	Receive Multiframe Sync / Frame Sync	L4	L5	K4	J4	
RCHMRK[4:1]	0	Receive Channel Marker	T4	N6	C6	B4	
		Backplane High Speed TDM Signals					
HTDATA	I	High Speed Bus Transmit Data		Т9			
HTSIG		High Speed Bus Transmit Signaling Data		F	9		
HRDATA	0	High Speed Bus Receive Data		F	R9		
HRSIG	0	High Speed Bus Receive Signaling Data		L.	10		
HSYSCLK		High Speed Bus System Clock		N	19		
HSSYNC	1/0	High Speed Bus System Sync		Ν	19		
		Status Signals					
ROCD[4:1]	0	Receive Out of Cell Delineation	R11	N14	P14	M11	
RLCD[4:1]	0	Receive Loss of Cell Delineation	L11	N11	P11	T11	
RLOF/LOTC[4:1]	0	Receive Loss of Frame / Loss of Transmit Clock	N4	L6	G4	F5	
RLOS[4:1]	0	Receive Loss of Signal	L3	M4	H4	F4	
		Microcontroller Interface					
ADDR[12]	I	Address Bus[12:0]			7		
ADDR[11]					7		
ADDR[10])7		
ADDR[9]			C7				
ADDR[8]			B7				
ADDR[7]				A7			
ADDR[6]			E8				
ADDR[5]			C8				
ADDR[4]			A8				
ADDR[3]			B8				
ADDR[2]			D8 F8				
ADDR[1] ADDR[0]				B9			
YDDK[0]			1		99		

	_		Pin #				
Name	Туре	Function	Port 4	Port 3	Port 2	Port 1	
DATA[7]	I/O	Data Bus[7:0]	-	E			
DATA[6]			F9				
DATA[5]			B10				
DATA[4]			A10				
DATA[3]				C.			
DATA[2]				D10			
DATA[1]				E10			
DATA[0]				F10			
CS	I	Chip Select		B ⁻			
$\overline{WR}(R/\overline{W})$	I	Write Input (Read/Write)		A ⁻			
RD(DS)	I	Read Input (Data Strobe)		C.			
BTS	I	Bus Type Select		D	11		
ĪNT	0	Interrupt		B ⁻	12		
HIZ	I	High Z		N	l3		
		JTAG					
JTRST	I	JTAG Reset		P.	10		
JTCLK	1	JTAG Clock		R	10	-	
JTMS	lpu	JTAG Mode Select			10		
JTDI	lpu	JTAG Data Input		N.			
JTDO	O	JTAG Data Output		M			
<u> </u>		Clock Signals					
RESET	1	Reset		R	8		
MCLK	i	Master Clock Input		C			
REFCLK	1/0	Reference Clock		A			
BPCLK	0	Backplane Clock Output					
DI GEIX	_	PIA L2/3 or POS-PHY L2/3 or SPI-3 System Interfa	ace				
TSCLK	1 1	Transmit System Clock		D	16		
TADR[4]	i	Transmit Address [4:0]		A1			
TADR[3]		Transmit ridaroso [moj					
TADR[2]			D12 B13				
TADR[1]			E11				
TADR[0]			A12				
TDATA[15]	1	Transmit Data [15:0]		М		-	
TDATA[14]	-			Ľ			
TDATA[13]				М			
TDATA[12]				R ⁻			
TDATA[11]				T.			
TDATA[10]				P.	13		
TDATA[9]					13		
TDATA[8]					12		
TDATA[7]					13		
TDATA[6]				Ľ			
TDATA[5]				М			
TDATA[4]				Ľ			
TDATA[3]			R16				
TDATA[2]			T16				
TDATA[1]			T14				
TDATA[0]			R15				
TPAR	I	Transmit Parity	C12				
TEN	I	Transmit Enable	C13				
TDXA[1] / TPXA	Oz	Transmit Direct cell/packet Available [1] / Polled	C15				
		cell/packet Available (tri-state)		_			

				Pin#			
Name	Туре	Function	Port 4	Port 3	Port 2	Port 1	
TDXA[4]	0	Transmit Direct cell/packet Available [4:2]	-	F		·	
TDXA[3] TDXA[2]					16 14		
TSOX	I	Transmit Start Of cell/packet			12		
TSPA	Oz	Transmit Selected Packet Available		С	16		
TEOP	I	Transmit End Of Packet			12		
TSX	I	Transmit Start of Transfer			12		
TMOD	I	Transmit packet data Modulus			14		
TERR	!	Transmit packet Error			12		
RSCLK		Receive System Clock			14		
RADR[4]	l	Receive Address [4:0]			12		
RADR[3]					13 16		
RADR[2] RADR[1]					15 15		
RADR[0]					15		
RDATA[15]	Oz	Receive Data [15:0] (tri-state)			13		
RDATA[14]					12		
RDATA[13]				М	15		
RDATA[12]				N	16		
RDATA[11]					13		
RDATA[10]					15		
RDATA[9]					15		
RDATA[8]					16		
RDATA[7]					16		
RDATA[6]					13		
RDATA[5] RDATA[4]					14 16		
RDATA[4]					16		
RDATA[2]					16		
RDATA[1]					16		
RDATA[0]					16		
RPAR	Oz	Receive Parity (active low tri-state)			15		
REN	I	Receive Enable (active low)		D	14		
RDXA[1] / RPXA /	Oz	Receive Direct cell/packet Available [1] / Polled		D	15		
RSX		cell/packet Available / Start of Transfer (tri-state)					
RDXA[4]	0	Receive Direct cell/packet Available [4:2]			16		
RDXA[3]					14		
RDXA[2]					15		
RSOX	Oz	Receive Start Of cell/packet (tri-state)			12		
REOP	Oz	Receive End Of Packet	-		15 15		
RVAL	Oz	Receive packet data Valid	1		15 13		
RMOD RERR	Oz Oz	Receive packet data Modulus Receive packet Error			13		
INERIA	1 02	TEST			ıJ		
GTEST1	ı	Global Test		Г)4		
GTEST2	'	Global 103t			4		
TTEST3	I	Transmit Test		N.	18		
TTEST2	'	Transmit 100t			18		
TTEST1					.9		
RTEST3	I	Receive Test			7		
RTEST2			1		7		
RTEST1					7		
SCAN_EN	1	Scan Enable			8		
SCAN_MODE		Scan Mode		T	8		

	_		Pin #			
Name	Type	Function		Port	Port	Port
			4	3	2	1
		POWER				
VSS	PWR	Ground, 0 Volt potential	E14, K	8, K7, k	(5, K6, c	J5, J9,
			J6, K1	1, K12,	K10, K9	9, J10,
			J8, J1	1		
VDD	PWR	Digital 3.3V			5, H9, 0	
			H6, G	11,G10,	H10, G	9, J7,
			G8, H	11		
AVDDRn	PWR	Analog 3.3V for receive LIU on port n	D1, E1	l, M1, N	1	
AVDDTn	PWR	Analog 3.3V for transmit LIU on port n	B1, G	I, K1, R	1	
AVDDC	PWR	Analog 3.3V for CLAD	H7			
AVSSRn	PWR	Analog Gnd for receive LIU	D2, E2, M2, N2			
AVSSTn	PWR	Analog Gnd for transmit LIU	B2, G2	2, K2, R	2	
AVSSC	PWR	Analog Gnd for CLAD	H8			
	No Connects					
NC	NC	No Connect	A15, E	314, E16	6, G14, I	H15,
		Note: Do not connect any signal to these balls,	J15, K	14, R14	, T15	
		leave unconnected.				

5.2 Detailed Pin List

Table 5-2 Pin Descriptions

Signal Name	I/O	Description		
•				
Packalone TDM Si	ianala			

Backplane TDM Sign	als	
RSER[4:1]	0	Receive Serial Data This output is the recovered raw data stream containing all overhead T1, E1 or J1
		bits. This signal is updated on the rising edge of RCLK output.
RCLKO[4:1]	0	Receive Clock Out This output is the receivered network clock under nermal conditions. During less of
		This output is the recovered network clock under normal conditions. During loss of signal conditions this clock is derived from the scaled signal at MCLK.
RSYNC[4:1]	0	Receive Sync
		An output sync pulse indicating the frame or multiframe boundaries in the data at RSER.
RM_RFSYNC [4:1]	0	Receive Multiframe or Frame Sync
		An output sync pulse indicating the frame or multiframe boundaries in the data at RSER in normal operation. When the high-speed bus is enabled, this output will
		indicate frame boundaries associated with the high-speed, multiplexed TDM bus operation.
RCHMRK[4:1]	0	Receive Channel Marker
		This output signal is user definable to be a cell/packet-mapping indicator in which it is high during channels mapped to the cell/packet interface or a channel clock. As a cell/packet mapping indicator this signal will be high during channels mapped to the cell/packet interface and can be used to de-multiplex non cell/packet data from the data stream at RSER. As a channel clock the user can program this output to pulse during the LSB of all channel times or produce a gated clock during any combinations of channels in both 64kbps or 56 kbps mode. RCHMRK is updated on the rising edge of RCLK.
TSERO[4:1]	0	Transmit Serial Data Out This is the output of the transmit cell/packet interface. In a pure cell/packet operation this pin can be connected to TSERI. This signal along with TCHMRK and TSERI can be used to multiplex TDM data with the cell/packet data. TSERO is updated on the rising edge of TCLK

TSERI[4:1]	I	Transmit Serial Data In This is the input to the transmit framer. In a pure cell/packet operation this pin can be connected to TSERO. This signal along with TCHMRK and TSERO can be used to multiplex TDM data with the cell/packet data. This signal is sampled on the falling edge of TCLK.
TCLK[4:1]	I	Transmit Clock A 1.544 MHz or a 2.048MHz primary transmit clock. Under normal operation this signal clocks data through the transceiver onto the network.
TSYNC[4:1]	I/O	Transmit Sync This signal can be defined as an output or input in either a frame or multiframe format.
		As an output, it is updated on the rising edge of TCLK. If the transmit synchronizer is enabled, this output will be synchronous to the embedded framing overhead in the signal present at TSERI. If there is no embedded framing overhead in the TSERI signal (the transmit synchronizer is disabled), TSYNC will assume an arbitrary alignment and it is up to the user to align data at TSERI with TSYNC.
		As an input, the user can force the transmit framer to align to the data present at TSERI. If the data at TSERI contains complete framing overhead the user can program the transmit framer to pass the overhead bits unmolested. Otherwise the transmit framer will calculate and insert all the appropriate overhead depending on the operational mode selected. TSYNC is sampled on the falling edge of TCLK.
TCHMRK[4:1]	0	Transmit Channel Marker This output signal is user definable to be a cell/packet-mapping indicator in which it is high during channels mapped to the cell/packet interface or a channel clock. As a cell/packet mapping indicator this signal will be high during channels mapped to the cell/packet interface and can be used to multiplex non cell/packet data with the data stream at TSERO. As a channel clock the user can program this output to pulse during the LSB of all channel times or produce a gated clock during any combinations of channels in both 64kbps or 56 kbps mode. TCHMRK is updated on the rising edge of TCLK.

Backplane HS T	DM Signals	
HRDATA	0	High Speed Bus Receive Data This output is the frame interleaved received data bus. This signal is updated on the rising edge of HSYSCLK.
HTDATA	I	High Speed Bus Transmit Data This input is the frame interleaved transmit data bus. This signal is sampled on the falling edge of HSYSCLK.
HSYSCLK	I	High Speed Bus System Clock A 2.048MHz, 4.096MHz, 8.192MHz, or 16.384MHz clock used to drive the high speed multiplexed bus.
HTSIG	I	High Speed Bus Transmit Signaling TDM Stream Input for the TDM signaling data to be inserted into the transmit data stream. This signal is sampled on the falling edge of HSYSCLK.
HRSIG	0	High Speed Bus Receive Signaling TDM Stream This output is the extracted TDM signaling data from the receive data stream. This signal is updated on the rising edge of HSYSCLK.
HSSYNC	I/O	High Speed Bus System Sync This input establishes the frame boundary for the multiplexed high-speed bus. This signal is sampled on the falling edge of HSYSCLK.

Status Signals	Status Signals				
ROCD[4:1]	0	Receive Out of Cell Delineation This output will be high when the cell processor is in an Out of Cell Delineation state.			
RLCD[4:1]	0	Receive Loss of Cell Delineation This output will be high when the cell processor has been in an Out of Cell Delineation condition for a programmed number of cells.			
RLOF/LOTC[4:1]	0	Receive Loss Of Frame / Loss Of Transmit Clock This output is user selectable to be high during either a loss of synchronization or loss of transmit clock.			
RLOS[4:1]	0	Receive Loss Of Signal This output will be high during a loss of signal at RTIP and RRING.			

Microcontroller Inte	Aicrocontroller Interface Signals				
ADDR[12:0]	I	Address Bus ADDR[12:0]			
DATA[7:0]	I/O	Data Bus DATA[7:0]			
CS	I	Chip Select			
		CS: Must be low to read or write to the device. CS is an active-low signal. This signal is used for both the parallel port and the serial port modes.			
$\overline{WR}(R/\overline{W})$	I	Write Input(Read/Write)			
RD(DS)	I	Read Input-Data Strobe			
BTS	I	Bus Type Select			
		This bit selects the processor interface mode of operation.			
		0 = Multiplexed			
		1 = Non-multiplexed			
INT	0	Interrupt			
		INT: Flags host controller during events, alarms, and conditions defined in the status			
		registers. Active-low open-drain output.			

JTAG Signals		
JTRST	1	JTAG Reset (active low) This input forces the JTAG controller logic into the reset state and forces the JTDO pin into high impedance when low. This pin should be low while power is applied and set high after the power is stable. The pin can be driven high or low for normal operation, but must be high for JTAG operation.
JTCLK	I	JTAG Clock This clock input is typically a low frequency (less than 10 MHz) 50% duty cycle clock signal.
JTMS	I	JTAG Mode Select (with pullup) This input signal is used to control the JTAG controller state machine and is sampled on the rising edge of JTCLK.
JTDI	1	JTAG Data Input (with pullup) This input signal is used to input data into the register that is enabled by the JTAG controller state machine and is sampled on the rising edge of JTCLK.
JTDO	0	JTAG Data Output This output signal is the output of an internal scan shift register enabled by the JTAG controller state machine and is updated on the falling edge of JTCLK. The pin is in the high impedance mode when a register is not selected or when the JTRST signal is high. The pin goes into and exits the high impedance mode after the falling edge of JTCLK

Network Interface	Signals	
RRING[4:1]	I	Receive Ring Analog input for clock recovery circuitry. This pin connects via a 1:1 transformer to the network. See <i>Line Interface Unit</i> for details.
RTIP[4:1]	I	Receive Tip Analog input for clock recovery circuitry. This pin connects via a 1:1 transformer to the network. See <i>Line Interface Unit</i> for details.
TRING[4:1]	0	Transmit Ring Analog line driver output. This pin connects via a 1:2 step-up transformer to the network. See <i>Line Interface Unit</i> for details.
STRING[4:1]	0	Secondary Transmit Ring Analog line driver output. Internally connected to TRING.
TTIP[4:1]	0	Transmit Tip Analog line driver output. This pin connects via a 1:2 step-up transformer to the network. See <i>Line Interface Unit</i> for details.
STTIP[4:1]	0	Secondary Transmit Tip Analog line driver output. Internally connected to TTIP.
TXENABLE	I	Transmit High Impedance Enable When high, TTIP and TRING will be placed into a high impedance state.

Backplane UTO	PIA/POS-PI	HY Signals
RSCLK	ı	Receive System Interface Clock This signal is used to sample or update the other receive system interface signals. RSCLK has a maximum frequency of 52 MHz.
RDAT[15:0]	0	Receive System Interface Data Bus This 16-bit data bus is used to transfer cell/packet data to the ATM/Link layer device. This bus is updated on the rising edge of RSCLK. In 16-bit mode, RDAT15 is the MSB, RDAT0 is the LSB In 8-bit mode, RDAT7 is the MSB, RDAT0 is the LSB, and RDAT[15:8] are held low.
RPAR	0	Receive System Interface Parity This signal indicates the parity on the data bus. This signal is updated on the rising edge of RSCLK.
RADR[4:0]	I	Receive System Interface Address Bus This 5-bit address bus is used by the ATM/Link layer device to select a specific port. RADR4 is the MSB and RADR0 is the LSB. This bus is sampled on the rising edge of RSCLK. In POS-PHY Level 3 mode, this bus is ignored.
REN	I	Receive System Interface Enable This signal is used by the ATM/Link device to control the transfer of cell/packet data on the RDAT bus. If REN is high, no transfer occurs. If REN is low, a transfer occurs. This signal is sampled on the rising edge of RSCLK.

RDXA[4:2]	0	Receive System Interface Direct Cell/Packet Available This signal is used to indicate when the associated port can send data to the ATM/Link layer device. This signal is updated on the rising edge of RSCLK. In UTOPIA mode, RDXA goes high when the associated port has more than a programmable number of ATM cells ready for transfer ("almost empty" level). RDXA goes low when the associated port does not have a complete ATM cell ready for transfer. In POS-PHY Level 2 mode, RDXA goes high when the associated port contains more data than the "almost empty" level or has an end of packet ready for transfer. RDXA goes low when the associated port does not have an end of packet ready for transfer and is "almost empty". In POS-PHY Level 3 mode, this signal is held low.
RDXA[1] / RPXA / RSX	0	Receive Direct cell/packet Available [1] / Polled cell/packet Available / Start of Transfer (tri-state) This signal is tri-state when global reset is applied. RDXA[1]: This signal is active in UTOPIA L2, UTOPIA L3 or POS-PHY L2 modes when direct status mode is selected. It is used to indicate when port 1 can send data to the ATM/Link layer device. This signal is updated on the rising edge of RSCLK. In UTOPIA L2 or UTOPIA L3 modes, RDXA goes high when port 1 has more than a programmable number of ATM cells ready for transfer ("almost empty" level). RDXA goes low when the associated port does not have a complete ATM cell ready for transfer. In POS-PHY L2 mode, RDXA goes high when port 1 contains more data than the "almost empty" level or has an end of packet ready for transfer. RDXA goes low when the associated port does not have an end of packet ready for transfer and is "almost empty". RPXA: (Reset default) This signal is active in UTOPIA L2, UTOPIA L3, or POS-PHY L2 modes when polled status mode is selected. It is used to indicate when the polled port, as selected by RADR[4:0], can send data to the ATM/Link layer device. This signal is updated on the rising edge of RSCLK. In UTOPIA L2 or UTOPIA L3 modes, RPXA goes high when the polled port has more than a programmable number of ATM cells ready for transfer ("almost empty" level). RPXA goes low when the polled port does not have a complete ATM cell ready for transfer. In POS-PHY L2 mode, RPXA goes high when the polled port contains more data than the "almost empty" level or has an end of packet ready for transfer and is "almost empty". In POS-PHY L2 mode, RPXA goes high when the polled port contains more data than the "almost empty" level or has an end of packet ready for transfer and is "almost empty". In UTOPIA L3 mode this signal is tri-stated when none of the ports is being polled or when data path reset is active. In UTOPIA L3 mode this signal is tri-stated when none of the ports is being polled or when data path reset is active. In UTOPIA L3 mo
		in-band address. When RSX is high, RVAL must be low. This signal is always driven in POS-PHY L3 mode.
RSOX	0	Receive System Interface Start Of Cell/Packet This signal is used to indicate the first transfer of a cell/packet. This signal is updated on the rising edge of RSCLK. In UTOPIA mode, RSOX is used to indicate the first transfer of a cell. In POS-PHY mode, RSOX is used to indicate the first transfer of a packet.

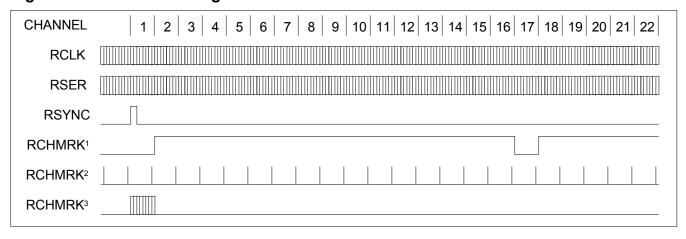
REOP	0	Receive System Interface End Of Packet This signal is used to indicate the last transfer of a packet. This signal is updated on the rising edge of RSCLK. In UTOPIA mode, this signal is held low.
RVAL	0	Receive System Interface Data Valid This signal is used to indicate the validity of a receive data transfer. When RVAL is high, the receive data bus (RDAT, RPAR, RSOX, REOP, RMOD, and RERR) is valid and a packet data transfer occurs. When RVAL is low, the receive data bus is invalid and a data transfer does not occurs. This signal is updated on the rising edge of RSCLK. RVAL goes high when a port is selected for packet data transfer and the port has a programmable size block of data or an end of packet ready for transfer. In POS-PHY Level 2 mode, RVAL goes low if the selected port is empty, at the end of a packet, or when $\overline{\text{REN}}$ is deasserted. Once RVAL goes low, it will remain low until $\overline{\text{REN}}$ is deasserted. In POS-PHY Level 3 mode, RVAL goes low if the selected port is empty or at the end of a packet if the minimum deassertion time is greater than zero. RVAL will remain deasserted for the programmable minimum deassertion time. In UTOPIA mode, this signal is held low.
RMOD	0	Receive System Interface Data Bus Modulus This signal is used to indicate the number of valid bytes on the RDAT bus. RMOD = 0 RDAT[15:0] valid RMOD = 1 RDAT[15:8] valid
		This signal is updated on the rising edge of RSCLK. RMOD is only valid when REOP is high. In UTOPIA or 8-bit POS-PHY mode, this signal is held low.
RERR	0	Receive System Interface Packet Error This signal is used to indicate that the current packet is errored. When RERR is high, the current packet should be aborted. This signal is updated on the rising edge of RSCLK. RERR is only valid when REOP is high. In UTOPIA mode, this signal is held low.
TSCLK	I	Transmit System Interface Clock This signal is used to sample or update the other transmit system interface signals. TSCLK has a maximum frequency of 52 MHz.
TDAT[15:0]	I	Transmit System Interface Data Bus This 16-bit data bus is used to transfer cell/packet data from the ATM/Link layer device. This bus is sampled on the rising edge of TSCLK. In 16-bit mode, TDAT15 is the MSB, TDAT0 is the LSB. In 8-bit mode, TDAT7 is the MSB, TDAT0 is the LSB, and TDAT[15:8] are held low.
TPAR	I	Transmit System Interface Parity This signal indicates the parity on the data bus. This signal is sampled on the rising edge of TSCLK.
TADR[4:0]	I	Transmit System Interface Address Bus This 5-bit address bus is used by the ATM/Link layer device to select a specific port. TADR7 is the MSB and TADR0 is the LSB. This bus is sampled on the rising edge of TSCLK.
TEN	I	Transmit System Interface Enable This signal is used by the ATM/Link device to control the transfer of cell/packet data on the TDAT bus. If TEN is high, no transfer occurs. If TEN is low, a transfer occurs. This signal is sampled on the rising edge of TSCLK.

TDXA[4: 2]	0	Transmit System Interface Direct Cell/Packet Available This signal is used to indicate when the associated port can accept data from the ATM/Link layer device. This signal is updated on the rising edge of TSCLK. In UTOPIA mode, TDXA goes high when the associated port can accept the transfer of more than a programmable number of ATM cells. TDXA goes low when the associated port cannot accept the transfer of a complete ATM cell. In POS-PHY mode, TDXA goes high when the associated port can store more data than the "almost full" level. TDXA goes low when the associated port is full.
TDXA[1] / TPXA	0	Transmit Direct cell/packet Available [1] / Polled cell/packet Available (tri-state) This signal is tri-state when global reset is applied. TDXA[1]: When direct status mode is selected, this signal is used to indicate when port 1 can accept data from the ATM/Link layer device. This signal is updated on the rising edge of TSCLK. In UTOPIA L2 or UTOPIA L3 modes, TDXA goes high when port 1 can accept the transfer of more than a programmable number of ATM cells. TDXA goes low when port 1 cannot accept the transfer of a complete ATM cell. In POS-PHY L2 or POS-PHY L3 modes, TDXA goes high when port 1 can store more data than the "almost full" level. TDXA goes low when port 1 is full. TPXA: (reset default) When polled status mode is selected, this signal is used to indicate when the polled port, as selected by TADR[4:0], can accept data from the ATM/Link layer device. This signal is updated on the rising edge of TSCLK. In UTOPIA L2 or UTOPIA L3 modes, TPXA goes high when the polled port can accept the transfer of more than a programmable number of ATM cells. TPXA goes low when the polled port cannot accept the transfer of a complete ATM cell. In POS-PHY L2 or POS-PHY L3 modes, TPXA goes high when the polled port can store more data than the "almost full" level. TPXA goes low when the polled port is full. In UTOPIA L2 (reset default) or POS-PHY L2 modes, this signal is driven when one of the ports is being polled, and is tri-stated when none of the ports is being polled or when data path reset is active. In UTOPIA L3 or POS-PHY L3 modes, this signal is driven. Note: Polled status mode and direct status mode is selected by the GCR1.DIREN bit.
тѕох	I	Transmit System Interface Start Of Cell/Packet This signal is used to indicate the first transfer of a cell/packet. This signal is sampled on the rising edge of TSCLK. In UTOPIA mode, TSOX indicates the first transfer of a cell. In POS-PHY mode, TSOX indicates the first transfer of a packet.
TSPA	0	Transmit System Interface Selected Packet Available This signal is used to indicate the selected port can accept data from the Link layer device. TSPA goes high when a port is selected for transfer and it can accept more data than the "almost full" level. TSPA goes low when the selected port is "full" or no port is selected. This signal is updated on the rising edge of TSCLK. In UTOPIA mode, this signal is held low.
TEOP	I	Transmit System Interface End Of Packet This signal is used to indicate the last transfer of a packet. This signal is sampled on the rising edge of TSCLK. In UTOPIA mode, this signal is ignored.
TSX	I	Transmit System Interface Start of Transfer This signal indicates the start of a data transfer. TSX goes high goes high immediately before the start of data transfer to indicate that the in-band port address is present on TDAT. TSX goes high when the value of TDAT is the address of the transmit port to which data is to be transferred. When TSX goes low, all subsequent transfers will be to the port specified by the in-band address. This signal is sampled on the rising edge of TSCLK. TSX is only valid when TEN is high. In UTOPIA or POS-PHY Level 2 mode, this signal is ignored.

TMOD	I	Transmit System Interface Data Bus Modulus This signal indicates the number of valid bytes on the TDAT bus.	
		TMOD = 0 $TDAT[15:0]$ valid $TMOD = 1$ $TDAT[15:8]$ valid	
		This signal is sampled on the rising edge of TSCLK. TMOD is only valid when TEOP is high. In UTOPIA or 8-bit POS-PHY mode, this signal is ignored.	
TERR	I	Transmit System Interface Packet Error This signal indicates that the current packet is errored. When TERR is high, the current packet should be aborted. This signal is sampled on the rising edge of TSCLK. TERR is only valid when TEOP is high. In UTOPIA mode, this signal is ignored.	

Clock Signals		
RESET	I	Reset (active low) This signal resets all the internal processor registers and logic when low. This pin should be low while power is applied and set high after the power is stable. This is an asynchronous input.
MCLK		Master Clock Input A (50ppm) clock source. This clock is used internally for both clock/data recovery and for the jitter attenuator for both T1 and E1 modes. The clock rate can be 16.384MHz, 8.192MHz, 4.096MHz, or 2.048MHz. When using the DS26556 in T1-only operation a 1.544MHz (50ppm) clock source can be used.
BPCLK	0	Backplane Clock This output clock is generated using the REFCLK signal as its source or one of the RCLKO[4:1] signals as its source and can be a 2.048 MHz, 4.096 MHz, or 8.192 MHz. This clock can be externally wired to HSYSCLK.
REFCLK	I/O	Reference Clock This clock is used as the reference source for the BPCLK either as an output or as an input. As an input, the input frequency must be either 1.544 MHz or 2.048 MHz. The mode of operation is controlled by the GCCR Register.

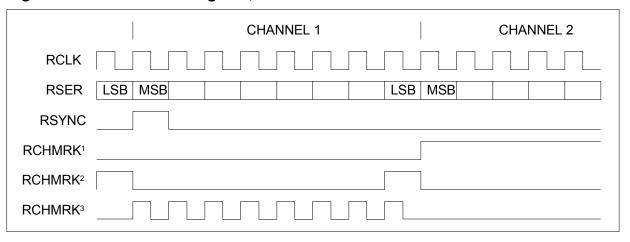
6 DEVICE CONFIGURATION


A typical, high-level device configuration scenario is shown below. There are many more aspects to setting up the device as described in this data sheet. This is intended to give the user a general procedure for setting up the DS26556.

- Configure Port Network Interface Mode (per-port): This step determines how each port will interface to the physical network
 - i) T1
- (a) ESF
- (b) D4
- ii) E1
- (a) FAS only
- (b) FAS + CRC4
- (c) FAS + CAS
- (d) FAS + CRC4 + CAS
- iii) J1
- (a) ESF
- (b) D4
- 2) **Configure Cell/Packet Interface Mode (global):** This step places the Cell/Packet interface into the ATM Cell mode or IP Packet mode. This selection is global to all ports.
 - i) Cell or Packet mode
 - (1) Cell
 - (2) Packet
 - ii) Select Cell/Packet backplane bus configuration
 - (1) 8 bits
 - (2) 16 bits
- 3) **Configure Port Backplane Interface (per-port):** This step determines how each port will be interfaced to the three backplane types available (Cell/Packet, TDM, High Speed Multiplexed TDM).
 - i) Pure Cell/packet
 - (a) Map all channels to Cell/Packet Interface
 - ii) Fractional Cell/Packet
 - (a) Select channels to be mapped to Cell/Packet interface
 - iii) Mixed TDM and Cell/Packet
 - (a) Select channels to be mapped to Cell/Packet interface
 - (b) Channels not mapped to Cell/Packet interface are available on TDM port. NOTE: All channels are actually available at the TDM ports. Signals at RCHMRK and TCHMRK pins indicate mapping status of each channel.
 - iv) High Speed Multiplexed TDM Bus
- 4) Configure Controller Interface
 - i) Enable appropriate interrupts

7 FUNCTIONAL PIN TIMING

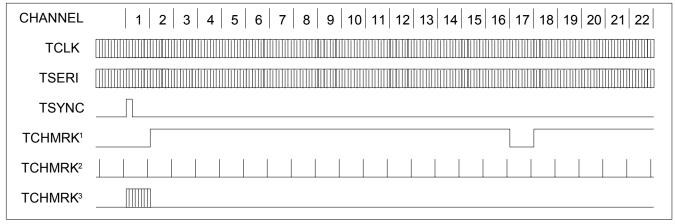
7.1 Receiver Functional Timing Diagrams


Figure 7-1 Receive TDM Signals

Notes:

- 1 RCHMRK in cell/packet mapping indicator mode
- 2 RCHMRK in channel marking mode
- 3 RCHMRK in gapped clock mode

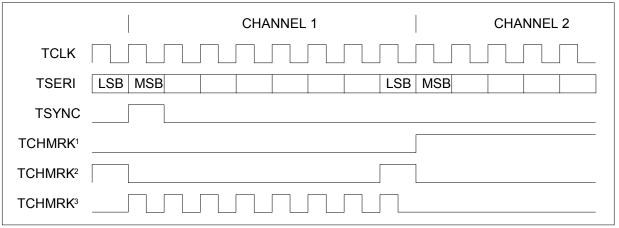
Figure 7-2 Receive TDM Signals, Details



Notes:

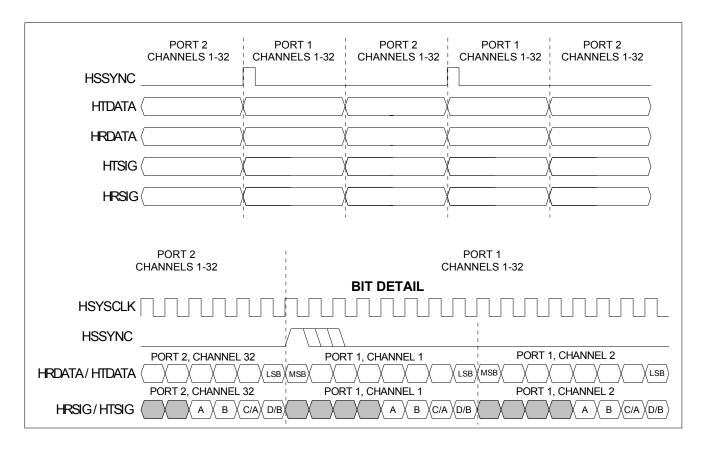
- 1 RCHMRK in cell/packet mapping indicator mode
- 2 RCHMRK in channel marking mode
- 3 RCHMRK in gapped clock mode

7.2 Transmitter Functional Timing Diagrams


Figure 7-3 Transmit TDM Signals

Notes:

- 1 TCHMRK in cell/packet mapping indicator mode
- 2 TCHMRK in channel marking mode
- 3 TCHMRK in gapped clock mode


Figure 7-4 Transmit TDM Signals, Details

Notes:

- 1 TCHMRK in cell/packet mapping indicator mode
- 2 TCHMRK in channel marking mode
- 3 TCHMRK in gapped clock mode

Figure 7-5 Two Port High Speed TDM Bus

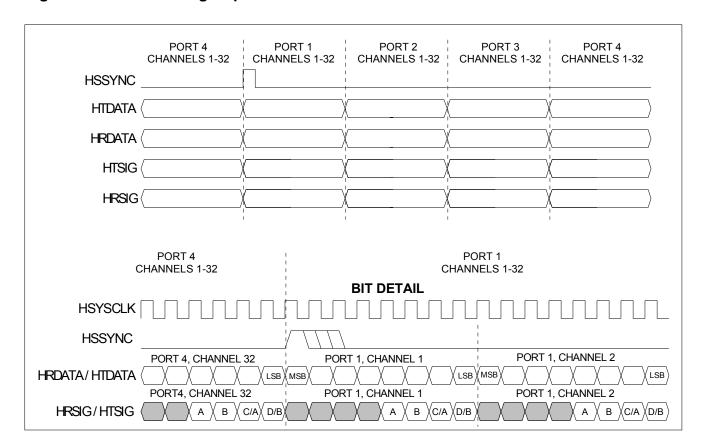


Figure 7-6 Four Port High Speed TDM Bus

7.3 UTOPIA/POS-PHY/SPI-3 System Interface Functional Timing

7.3.1 UTOPIA Level 2 Functional Timing

Figure 7-7 shows a multidevice transmit-interface multiple cell transfer to different PHY devices. On clock edge 2, the ATM device places address '00h' on the address bus (which is mapped to Port 1). PHY device '1' (Port 1) indicates to the ATM device that it can accept cell data by asserting TDXA[1]. On clock edge 4, the ATM device selects PHY device '1'. On clock edge 5, the ATM device starts a cell transfer to PHY device '1' by asserting $\overline{\text{TEN}}$, placing the first byte of cell data on TDATA, and asserting TSOX to indicate the transfer of the first byte of the cell. On clock edge 6, the ATM device deasserts TSOX as it continues to place additional bytes of the cell on TDATA. On clock edge 13, PHY device '2' asserts TDXA[2] to indicate to the ATM device that it is ready to accept cell data. On clock edge 15, PHY device '1' indicates that it cannot accept the transfer of a complete cell by deasserting $\overline{\text{TEN}}$ and placing PHY device '2's address on TADR. On clock edge 17, the ATM device starts the transfer of a cell to PHY device '2' by asserting $\overline{\text{TEN}}$, placing the first byte of cell data on TDATA, and asserting TSOX to indicate the transfer of the first byte of the cell. On clock edge 18, the ATM device deasserts TSOX as it continues to place additional bytes of the cell on TDATA.

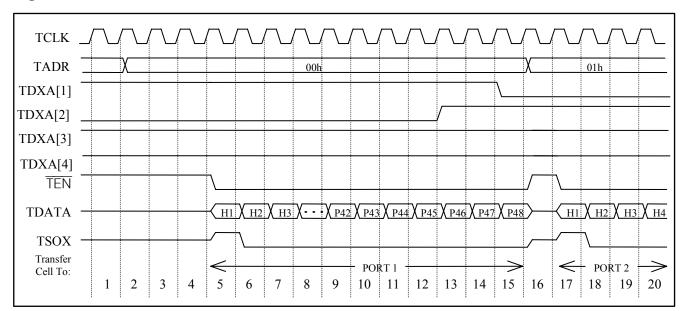


Figure 7-7 UTOPIA Level 2 Transmit Cell Transfer Direct Mode

Figure 7-8 shows a multidevice transmit-interface multiple cell transfer to different PHY devices. On clock edge 2, the ATM device places address '00h' on the address bus (which is mapped to Port 1). PHY device '1' (Port 1) indicates to the ATM device that it has a complete cell to send by asserting RDXA[1]. On clock edge 4, the ATM device selects PHY device '1'. On clock edge 5, the ATM device asserts REN. On clock edge 6, the PHY device '1' starts a cell transfer to the ATM device by placing the first byte of cell data on RDATA, and asserting RSOX to indicate the transfer of the first byte of the cell. On clock edge 7, the PHY device deasserts RSOX as it continues to place additional bytes of the cell on RDATA. On clock edge 13, PHY device '2' asserts RDXA[2] to indicate to the ATM device that it is ready to send a cell. On clock edge 15, PHY device '1' indicates that it cannot transfer a complete cell by deasserting RDXA[1]. On clock edge 16, the ATM device deselects PHY device '1' and selects PHY device '2' by deasserting RDXA[1]. On clock edge 16, the ATM device deselects PHY device '1' and selects PHY device '2' by deasserting RDXA[1] and placing PHY device '2's address on RADR. On clock edge 17, the ATM device asserts REN. On clock edge 18, PHY device '2' (Port 2) starts the transfer of a cell to the ATM device by placing the first byte of cell data on RDATA, and asserting RSOX to indicate the transfer of the first byte of the cell. On clock edge 18, the PHY device deasserts RSOX as it continues to place additional bytes of the cell on RDATA.

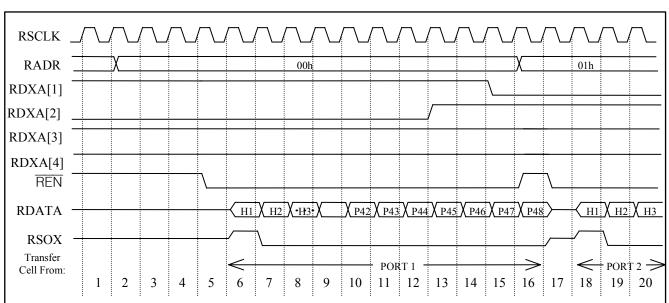


Figure 7-8 UTOPIA Level 2 Receive Cell Transfer Direct Mode

Figure 7-9 shows a multidevice transmit-interface multiple cell transfer to different PHY devices. On clock edge 2, the ATM device polls PHY device 'N'. On clock edge 3, PHY device 'N' indicates to the ATM device that it can accept cell data by asserting TPXA. On clock edge 4, the ATM device selects PHY device 'N'. On clock edge 5, the ATM device starts a cell transfer to PHY device 'N' by asserting $\overline{\text{TEN}}$, placing the first byte of cell data on TDATA, and asserting TSOX to indicate the transfer of the first byte of the cell. On clock edge 6, the ATM device deasserts TSOX as it continues to place additional bytes of the cell on TDATA. On clock edge 6, the ATM device also polls PHY device 'O'. On clock edge 7, PHY device 'O' indicates that it can accept the transfer of a complete cell. On clock edge 15, PHY device 'N' indicates that it cannot accept the transfer of a complete cell. On clock edge 16, the ATM device deselects PHY device 'N' and selects PHY device 'O' by deasserting $\overline{\text{TEN}}$ and placing PHY device 'O's address on TADR. On clock edge 17, the ATM device starts the transfer of a cell to PHY device 'O' by asserting $\overline{\text{TEN}}$, placing the first byte of cell data on TDATA, and asserting TSOX to indicate the transfer of the first byte of the cell. On clock edge 18, the ATM device deasserts TSOX as it continues to place additional bytes of the cell on TDATA.

Figure 7-9 UTOPIA Level 2 Transmit Multiple Cell Transfer Polled Mode

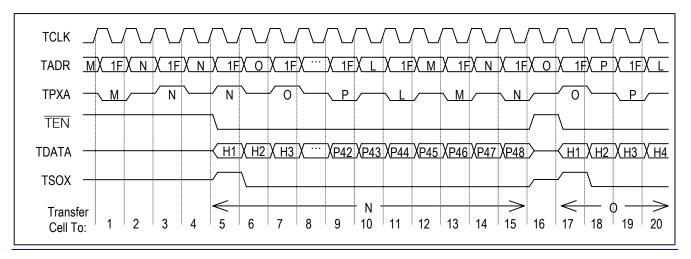


Figure 7-10 shows a multidevice receive-interface multiple cell transfer from different PHY devices. On clock edge 2, the ATM device polls PHY device 'N'. On clock edge 3, PHY device 'N' indicates to the ATM device that it has a complete cell ready for transfer by asserting RPXA. On clock edge 4, the ATM device selects PHY device 'N'. On clock edge 5, the ATM device asserts REN. On clock edge 6, PHY device 'N' starts a cell transfer by placing the first byte of cell data on RDATA, and asserting RSOX to indicate the transfer of the first byte of the cell. On clock edge 7, PHY device 'N' deasserts RSOX as it continues to place additional bytes of the cell on RDATA. On clock edge 12, the ATM device polls PHY device 'O'. On clock edge 13, PHY device 'O' indicates to the ATM device that it has a complete cell ready for transfer by asserting RPXA. On clock edge 16, the ATM device deselects PHY device 'N' and selects PHY device 'O' by deasserting REN and placing PHY device 'O's address on RADR. On clock edge 17, the ATM device asserts REN and PHY device 'N' stops transferring cell data and tri-states its RDATA and RSOX outputs. On clock edge 18, PHY device 'O' starts a cell transfer by placing the first byte of cell data on RDATA, and asserting RSOX to indicate the transfer of the first byte of the cell. On clock edge 19, PHY device 'O' deasserts RSOX as it continues to place additional bytes of the cell on RDATA.

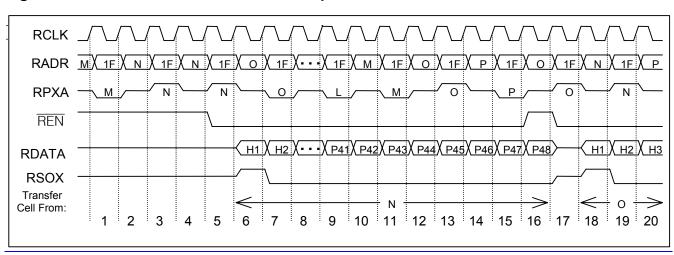


Figure 7-10 UTOPIA Level 2 Receive Multiple Cell Transfer Polled Mode

Figure 7-11 shows a multidevice receive-interface unexpected multiple cell transfer. Prior to clock edge 1, the cell transfer was started. On clock edge 4, since no other PHY device has a cell ready for transfer, the ATM device assumes another cell transfer from PHY device 'N' and leaves $\overline{\text{REN}}$ asserted. On clock edge 5, PHY device 'N' stops transferring cell data and indicates that it does not have another cell ready for transfer by not asserting RSOX. On clock edge 6, the ATM device deasserts $\overline{\text{REN}}$ to end the cell transfer process. At the same time, PHY device 'N' indicates to the ATM device that it now has a complete cell ready for transfer by placing the first byte of cell data on RDAT, and asserting RSOX to indicate the transfer of the first byte of the cell. On clock edge 7, PHY device 'N' tristates its RDAT and RSOX outputs because $\overline{\text{REN}}$ is deasserted. On clock edge 8, the ATM device selects PHY device 'N'. On clock edge 9, the ATM device asserts $\overline{\text{REN}}$. On clock edge 10, PHY device 'N' continues the cell transfer by placing the second byte of cell data on RDAT, and deasserting RSOX.

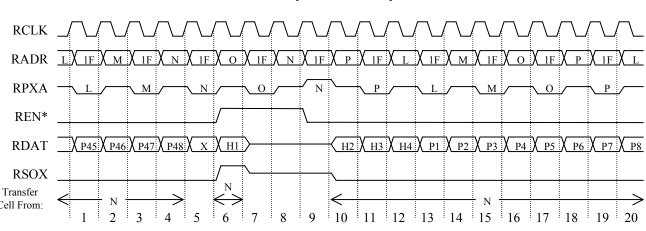


Figure 7-11 UTOPIA Level 2 Receive Unexpected Multiple Cell Transfer

37 of 362

7.3.2 UTOPIA Level 3 Functional Timing

Figure 7-12 shows a multiport transmit-interface multiple cell transfer to different PHY devices. PHY port '1', '3', '4' indicate to the ATM device that they can accept cell data by asserting the TDXA[n]. On clock edge 2, the ATM device selects PHY port '1' by putting address '00h' on the address bus. On clock edge 5, the ATM device starts a cell transfer to PHY port '1' by asserting $\overline{\text{TEN}}$, placing the first byte of cell data on TDATA, and asserting TSOX to indicate the transfer of the first byte of the cell. On clock edge 6, the ATM device deasserts TSOX as it continues to place additional bytes of the cell on TDATA. On clock edge 13, PHY port '2' asserts TDXA[2] to indicate it is ready to accept a cell. On clock edge 15, PHY port '1' deasserts TDXA[1] to indicate to the ATM device that it does not have the availability to receive another complete cell. On clock edge 16, the ATM device selects PHY port '2' by deasserting $\overline{\text{TEN}}$ and placing PHY port '2's address on TADR. On clock edge 17, the ATM device starts the transfer of a cell to PHY port '2' by asserting $\overline{\text{TEN}}$, placing the first byte of cell data on TDATA, and asserting TSOX to indicate the transfer of the first byte of the cell. On clock edge 18, the ATM device deasserts TSOX as it continues to place additional bytes of the cell on TDATA.

Figure 7-12 UTOPIA Level 3 Transmit Multiple Cell Transfer Direct Mode

Figure 7-13 shows a multiport transmit-interface multiple cell transfer to different PHY devices. On clock edge 1, the ATM device polls PHY port 'N'. On clock edge 3, PHY port 'N' indicates to the ATM device that it can accept cell data by asserting TPXA. On clock edge 5, the ATM device selects PHY port 'N'. On clock edge 6, the ATM device starts a cell transfer to PHY port 'N' by asserting $\overline{\text{TEN}}$, placing the first byte of cell data on TDATA, and asserting TSOX to indicate the transfer of the first byte of the cell. On clock edge 7, the ATM device polls PHY port 'M'. On clock edge 11, the ATM device polls PHY port 'M'. On clock edge 12, the ATM device polls PHY port 'N'. On clock edge 13, PHY port 'M' indicates that it can accept the transfer of a complete cell. On clock edge 14, PHY port 'N' indicates that it cannot accept the transfer of a complete cell. On clock edge 16, the ATM device deselects PHY port 'N' and selects PHY port 'M' by deasserting $\overline{\text{TEN}}$ and placing PHY port 'M's address on TADR. On clock edge 17, the ATM device starts the transfer of a cell to PHY port 'M' by asserting $\overline{\text{TEN}}$, placing the first byte of cell data on TDATA, and asserting TSOX to indicate the transfer of the first byte of the cell. On clock edge 18, the ATM device deasserts TSOX as it continues to place additional bytes of the cell on TDATA.

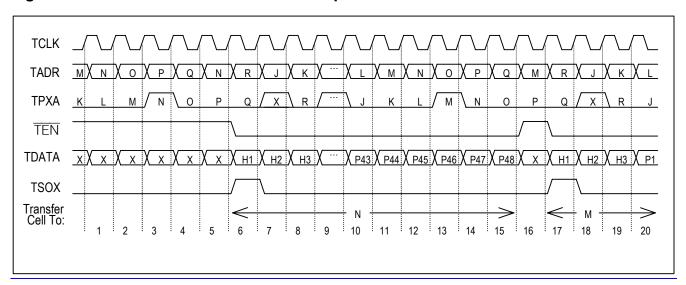


Figure 7-13 UTOPIA Level 3 Transmit Multiple Cell Transfer Polled Mode

Figure 7-14 shows a multiport receive-interface multiple cell transfer from different PHY ports. On clock edge 3, PHY port 'N' indicates to the ATM device that it has a complete cell ready for transfer by asserting RPXA. On clock edge 5, the ATM device selects PHY port 'N'. On clock edge 6, the ATM device indicates to PHY port 'N' that it is ready to accept a complete cell transfer by asserting REN. On clock edge 8, PHY port 'N' starts a cell transfer by placing the first byte of cell data on RDATA, and asserting RSOX to indicate the transfer of the first byte of the cell. On clock edge 9, PHY port 'N' deasserts RSOX as it continues to place additional bytes of the cell on RDAT. On clock edge 11, the ATM device polls PHY device 'N'. On clock edge 12, PHY port 'M' indicates to the ATM device that it has a complete cell ready for transfer by asserting RPXA. On clock edge 12, PHY port 'N' indicates to the ATM device that it does not have a complete cell ready for transfer by deasserting RPXA. On clock edge 15, the ATM device deselects PHY port 'N' and selects PHY port 'M' by deasserting REN and placing PHY port 'M's address on RADR. On clock edge 16, the ATM device asserts REN. On clock edge 17, PHY port 'N' stops transferring cell data. On clock edge 18, PHY port 'M' starts a cell transfer by placing the first byte of cell data on RDATA, and asserting RSOX to indicate the transfer of the first byte of the cell. On clock edge 19, PHY port 'M' deasserts RSOX as it continues to place additional bytes of the cell on RDATA.

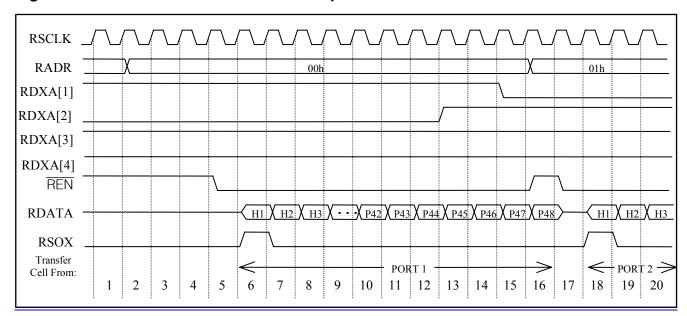


Figure 7-14 UTOPIA Level 3 Receive Multiple Cell Transfer Direct Mode

Figure 7-15 shows a multiport receive-interface multiple cell transfer from different PHY ports. On clock edge 1, the ATM device polls PHY port 'N'. On clock edge 3, PHY port 'N' indicates to the ATM device that it has a complete cell ready for transfer by asserting RPXA. On clock edge 5, the ATM device selects PHY port 'N'. On clock edge 6, the ATM device indicates to PHY port 'N' that it is ready to accept a complete cell transfer by asserting $\overline{\text{REN}}$. On clock edge 8, PHY port 'N' starts a cell transfer by placing the first byte of cell data on RDATA, and asserting RSOX to indicate the transfer of the first byte of the cell. On clock edge 9, PHY port 'N' deasserts RSOX as it continues to place additional bytes of the cell on RDAT. On clock edge 11, the ATM device polls PHY device 'N'. On clock edge 12, PHY port 'M' indicates to the ATM device that it has a complete cell ready for transfer by asserting RPXA. On clock edge 12, PHY port 'N' indicates to the ATM device that it does not have a complete cell ready for transfer by deasserting RPXA. On clock edge 15, the ATM device deselects PHY port 'N' and selects PHY port 'M' by deasserting $\overline{\text{REN}}$ and placing PHY port 'M's address on RADR. On clock edge 16, the ATM device asserts $\overline{\text{REN}}$. On clock edge 17, PHY port 'N' stops transferring cell data. On clock edge 18, PHY port 'M' starts a cell transfer by placing the first byte of cell data on RDATA, and asserting RSOX to indicate the transfer of the first byte of the cell. On clock edge 19, PHY port 'M' deasserts RSOX as it continues to place additional bytes of the cell on RDATA.

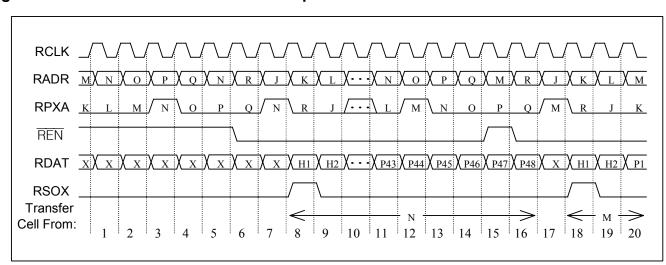


Figure 7-15 UTOPIA Level 3 Receive Multiple Cell Transfer Polled Mode

7.3.3 POS-PHY Level 2 Functional Timing

Figure 7-16 shows a multidevice transmit interface in byte transfer mode multiple packet transfer to different PHY ports. Prior to clock edge 1, the POS device started a packet transfer to PHY port '1'. On clock edge 2, PHY port '1' deasserts its TDXA to indicate to the POS device that it cannot accept any more data transfers. On clock edge 3, the POS device stops the packet transfer to PHY port '1', and starts a packet transfer to PHY port '2' by leaving TEN asserted, placing PHY port '2's address on TADR, placing the first byte of packet data on TDATA, and asserting TSOX to indicate the transfer of the first byte of the packet. On clock edge 7, PHY port '2' deasserts its TDXA to indicate to the POS device that it cannot accept any more data transfers. On clock edge 8, the POS device stops the packet transfer to PHY port '2', and resumes a packet transfer to PHY port '3'. On clock edge 12, PHY port '2' indicates to the POS device that it can accept a block of packet data by asserting its TDXA. Also, the POS device indicates it is transferring the last byte of packet data by asserting TEOP. On clock edge 13, the POS device ends the packet transfer to PHY port '3', and starts a packet transfer to PHY port '4'. On clock edge 15, PHY port '1' indicates to the POS device that it can accept a block of packet data. On clock edge 17, PHY port '4' deasserts its TDXA to indicate to the POS device that it cannot accept any more data transfers. On clock edge 18, the POS device stops the packet transfer to PHY port '4', and resumes a packet transfer to PHY port '1'.

TCLK

Figure 7-16 Transmit Multiple Packet Transfer to Different PHY ports (direct status mode)

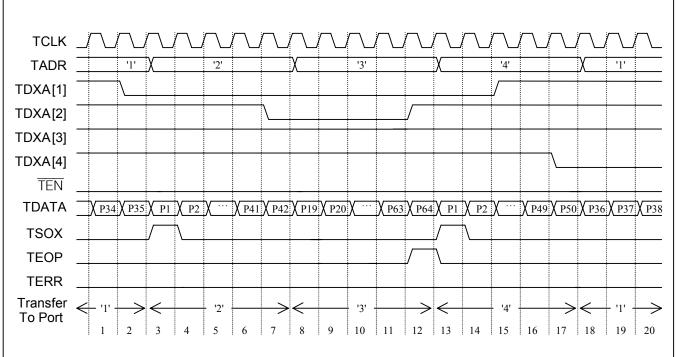


Figure 7-17 shows a multidevice receive interface in byte transfer mode multiple packet transfer from different PHY ports/devices. Prior to clock edge 1, a packet data transfer was initiated from PHY port '1', and PHY ports '2', '3', and '4' indicated to the POS device that they have a block of packet data or an end of packet ready for transfer by asserting their RDXA. On clock edge 2, the POS device indicates to PHY port '1' that it cannot accept any more data transfers by removing its address from RADR, and indicates to PHY port '2' that it is ready to accept a block of packet data by placing its address on RADR and leaving REN asserted. On clock edge 3, PHY port '1' stops transferring packet data, and PHY port '2' starts a packet transfer by leaving RVAL asserted, placing the first byte of the packet on RDATA, and asserting RSOX to indicate that this is the first transfer of the packet. On clock edge 4, PHY port '2' deasserts RSOX as it leaves RVAL asserted and continues to place additional bytes of the packet on RDATA. On clock edge 8, the POS device deasserts REN to indicate to PHY port '2' that it cannot accept any more data transfers. On clock edge 9, PHY port '2' ends the packet transfer process by deasserting RVAL and tri-stating its RVAL, RDATA, RSOX, REOP, and RERR outputs. And, the POS device indicates to PHY port '3' that it is ready to accept a block of packet data by placing its address on RADR and reasserting REN. On clock edge 10, PHY port '3' continues a packet transfer by asserting RVAL and placing the next byte of packet data on RDATA. On clock edge 14, PHY port '3' places the last byte of the packet on RDATA, and asserts REOP to indicate that this is the last transfer of the packet. On clock edge 15, PHY port '3' deasserts RVAL and REOP ending the packet transfer

process, as well as, deasserting RDXA to indicate that it does not have another block of packet data or an end of packet ready for transfer. On clock edge 16, the POS device indicates to PHY port '4' that it is ready to accept a block of packet data by placing its address on RADR and leaving REN asserted. On clock edge 17, PHY port '4' starts a packet transfer by leaving RVAL asserted, placing the first byte of the packet on RDATA, and asserting RSOX to indicate that this is the first transfer of the packet. On clock edge 18, PHY port '4' deasserts RSOX as it leaves RVAL asserted and continues to place additional bytes of the packet on RDATA.

Figure 7-17 POS-PHY Level 2 Receive Multiple Packet Transfer from Different PHY Ports/Devices (direct status mode)

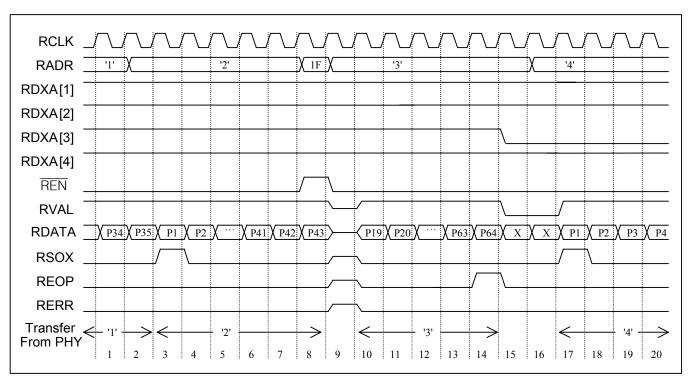


Figure 7-18 shows a multidevice transmit interface in packet transfer mode multiple packet transfer to different PHY ports. On clock edge 2, the POS device polls PHY port 'N'. On clock edge 3, PHY port 'N' indicates to the POS device that it can accept a block of packet data by asserting TPXA. On clock edge 4, the POS device selects PHY port 'N'. On clock edge 5, the POS device starts a packet transfer to PHY port 'N' by asserting $\overline{\text{TEN}}$, placing the first byte of packet data on TDATA, and asserting TSOX to indicate the transfer of the first byte of the packet. On clock edge 6, the POS device deasserts TSOX as it continues to place additional bytes of the packet on TDATA. And, PHY port 'N' drives its TSPA output high. On clock edge 10, the POS device polls PHY port 'M'. On clock edge 11, the POS device asserts TEOP to indicate the transfer of the last byte of the packet to PHY port 'N' and PHY port 'M' indicates to the POS device that it can accept a block of packet data by asserting TPXA. On clock edge 12, the POS device deasserts $\overline{\text{TEN}}$ to end the packet transfer process to PHY port 'N' and selects PHY port 'M'. On clock edge 13, the POS device starts a packet transfer to PHY port 'M' by asserting $\overline{\text{TEN}}$, placing the first byte of packet data on TDATA, and asserting TSOX to indicate the transfer of the first byte of the packet. And, PHY port 'N' tristates its TSPA output. On clock edge 14, the POS device deasserts TSOX as it continues to place additional bytes of the packet on TDATA. And, PHY port 'M' drives its TSPA output high.

Figure 7-18 POS-PHY Level 2 Transmit Multiple Packet Transfer to Different PHY Ports (polled status mode)

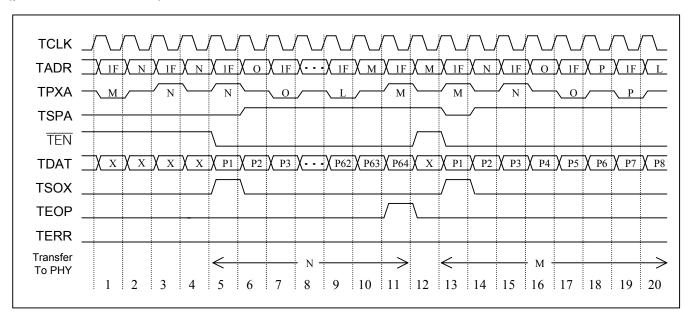
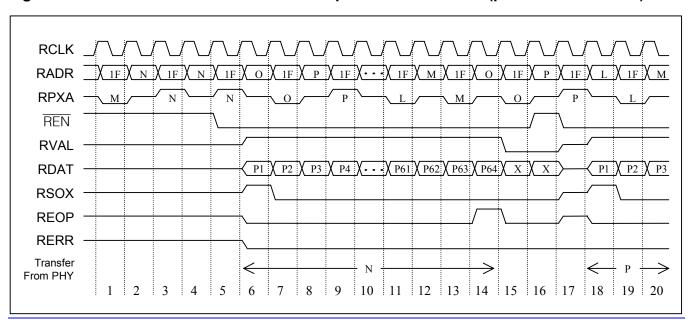



Figure 7-19 shows a multidevice receive interface in packet transfer mode multiple packet transfer. On clock edge 2, the POS device polls PHY port 'N'. On clock edge 3, PHY port 'N' indicates to the POS device that it has a block of packet data or an end of packet ready for transfer by asserting RPXA. On clock edge 4, the POS device selects PHY port 'N'. On clock edge 5, the POS device indicates to PHY port 'N' that it is ready to accept a block of packet data by placing its address on RADR and asserting REN. On clock edge 6, PHY port 'N' starts packet transfer by asserting RVAL, placing the first byte of the packet on RDATA, and asserting RSOX to indicate that this is the first transfer of the packet. On clock edge 7, PHY port 'N' deasserts RSOX as it leaves RVAL asserted and continues to place additional bytes of the packet on RDATA. On clock edge 14, PHY port 'N' places the last byte of the packet on RDATA, and asserts REOP to indicate that this is the last transfer of the packet. On clock edge 15, PHY port 'N' deasserts RVAL and REOP ending the packet transfer process. On clock edge 16, the POS device deasserts REN and selects PHY port 'P'. On clock edge 17, PHY port 'N' tri-states its RVAL, RDATA, RSOX, REOP, and RERR outputs and the POS device indicates to PHY port 'P' that it is ready to accept a block of packet data by placing its address on RADR and asserting REN. On clock edge 18, PHY port 'P' starts packet transfer by asserting RVAL, placing the first byte of the packet on RDATA, and asserting RSOX to indicate that this is the first transfer of the packet. On clock edge 19, PHY port 'P' deasserts RSOX as it leaves RVAL asserted and continues to place additional bytes of the packet on RDATA. While this example shows a different PHY port ('P') being selected for the next packet transfer, the timing is identical if the same PHY port ('N') is chosen for the next packet transfer.

Figure 7-19 POS-PHY Level 2 Receive Multiple Packet Transfer (polled status mode)

7.3.4 POS-PHY Level 3 Functional Timing

Figure 7-20 shows a multiport transmit interface multiple packet transfer to different PHY ports. On clock edge 1, PHY port 'N' indicates to the POS device that it can accept a block of packet data by asserting TPXA. On clock edge 3, the POS device selects PHY port 'N' by placing its address on TDATA and asserting TSX while $\overline{\text{TEN}}$ is deasserted. On clock edge 4, the POS device starts a packet transfer to PHY port 'N' by deasserting TSX, asserting $\overline{\text{TEN}}$, placing the first byte of packet data on TDATA, and asserting TSOX to indicate the transfer of the first byte of the packet. On clock edge 5, the POS device deasserts TSOX as it continues to place additional bytes of the packet on TDATA and PHY port 'N' asserts TSPA. On clock edge 11, the POS device polls PHY port 'L'. On clock edge 12, PHY port 'N' indicates that it cannot accept any more data transfers by deasserting TSPA. On clock edge 13, PHY port 'L' indicates to the POS device that it can accept a block of packet data by asserting TPXA. On clock edge 14, the POS device deasserts $\overline{\text{TEN}}$ to end the packet transfer process to PHY port 'N' and selects PHY port 'L' by placing its address on TDATA and asserting TSX while $\overline{\text{TEN}}$ is deasserted. On clock edge 15, the POS device starts a packet transfer to PHY port 'L' by asserting $\overline{\text{TEN}}$, deasserting TSX, placing the first byte of packet data on TDATA, and asserting TSOX to indicate the transfer of the first byte of the packet. On clock edge 16, the POS device deasserts TSOX as it continues to place additional bytes of the packet on TDATA and PHY port 'L' asserts TSPA.

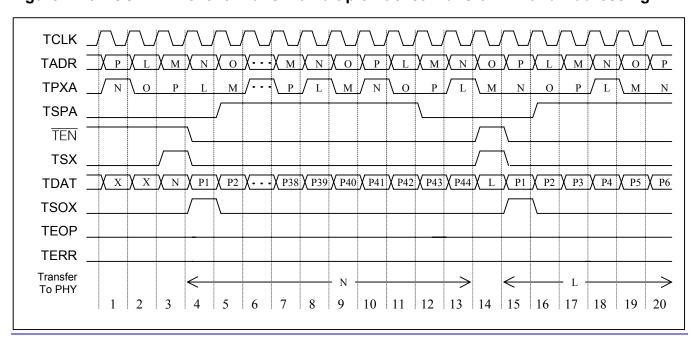
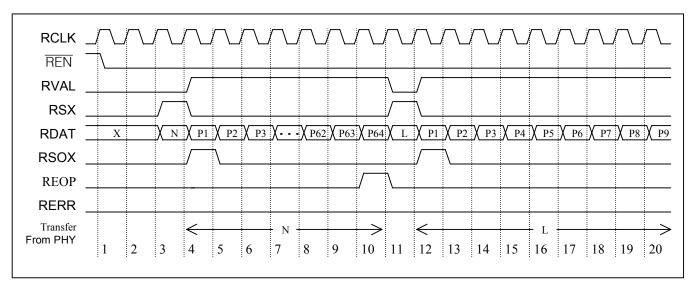



Figure 7-20 POS-PHY Level 3 Transmit Multiple Packet Transfer In-Band Addressing

Figure 7-21 shows a multiport receive-interface multiple packet transfer from different ports. On clock edge 1, the POS device indicates to PHY port 'N' that it is ready to accept a block of packet data by asserting $\overline{\text{REN}}$. On clock edge 3, the PHY device selects port 'N' for transfer by asserting RSX and placing its address on RDATA. On clock edge 4, PHY port 'N' starts packet transfer by deasserting RSX, asserting RVAL, placing the first byte of the packet on RDATA, and asserting RSOX to indicate that this is the first transfer of the packet. On clock edge 5, PHY port 'N' deasserts RSOX as it leaves RVAL asserted and continues to place additional bytes of the packet on RDATA. On clock edge 10, PHY port 'N' places the last byte of the packet on RDATA, and asserts REOP to indicate that this is the last transfer of the packet. On clock edge 11, the PHY device deasserts RVAL and REOP ending the packet transfer process from port 'N' and selects PHY port 'L' for transfer by asserting RSX and placing its address on RDATA. On clock edge 12, PHY port 'L' starts packet transfer by deasserting RSX, asserting RVAL, placing the first byte of the packet on RDATA, and asserting RSOX to indicate that this is the first transfer of the packet. On clock edge 13, PHY port 'L' deasserts RSOX as it leaves RVAL asserted and continues to place additional bytes of the packet on RDATA.

Figure 7-21 POS-PHY Level 3 Receive Multiple Packet Transfer In-Band Addressing

8 FUNCTIONAL DESCRIPTION

8.1 Cell / Packet Interface Description

The CELL / PACKET INTERFACE demaps the ATM cells or HDLC packets from a physical data stream in the receive direction and maps ATM cells or HDLC packets into a physical data stream in the transmit direction. In cell mode, the system interface is connected to an ATM Layer device and cells are transported via a UTOPIA 2, UTOPIA 3, POS-PHY 2, or a POS-PHY 3 Bus. In packet mode, the system interface is connected to a Link Layer device and the packets are transported via a POS-PHY 2 or a POS-PHY 3 Bus.

The receive direction extracts the payload from physical data stream, performs cell/packet processing on the individual lines, stores the cell/packet data from each line in the FIFO, removes cell/packet data for each port from the FIFO, and outputs the cell/packet data to the ATM/Link Layer device via the system interface.

The transmit direction inputs the cell/packet data from the ATM/Link Layer device via the system interface, stores the cell/packet data for each port in the FIFO, removes the cell/packet data for each line from the FIFO, performs cell/packet processing for each individual lines, multiplexes the individual lines into the payload, and inserts the payload into the physical data stream.

The Receive Channel Mark and Transmit Channel Mark registers in the receive and transmit framer section are used to map channels (DS0s) to the cell/packet interface.

8.1.1 Reset Descriptions

Unless noted otherwise, during a reset ($\overline{\text{RESET}}$ pin low) all inputs will be ignored, and all outputs will be low. Unless noted otherwise, during a data path reset (LDRST bit = 0), with the exception of the register interface signals, all inputs will be ignored, and all should be low. During a data path reset, the register interface signals will operate normally allowing the registers to be written and read.

8.1.2 BIT / BYTE Ordering

The bits in a byte are received MSB first, LSB last. When they are output serially, they are output MSB first, LSB last. The bits in a byte in an incoming signal are numbered in the order they are received, 1 (MSB) to 8 (LSB). However, when a byte is stored in memory, the MSB is stored in the highest numbered bit (7), and the LSB is stored in the lowest numbered bit (0). This is to differentiate between a byte in memory and the corresponding byte in a signal.

8.2 UTOPIA/POS-PHY/SPI-3 System Interface

8.2.1 General Description

The UTOPIA/POS-PHY system interface transports ATM cells or HDLC packets between the DS26556 and an ATM or Link Layer device. In UTOPIA mode, the DS26556 is connected to an ATM layer device and cells are transported via a UTOPIA L2 or UTOPIA L3 Bus. In POS-PHY packet mode, the DS26556 is connected to a Link Layer device and the packets are transported via a POS-PHY 2 or a POS-PHY 3 (or SPI-3) Bus. In POS-PHY cell mode, the DS26556 is connected to an ATM layer device and cells are transported via a POS-PHY 2 or a POS-PHY 3 (or SPI-3) Bus. The system interface supports 8-bit or 16-bit transfers at a rate of 52 MHz or less.

The receive direction removes cell/packet data for each port from the FIFO, and outputs the cell/packet data to the ATM/Link Layer device via the system interface.

The transmit direction inputs the cell/packet data from the ATM/Link Layer device via the system interface, and stores the cell/packet data for each port in the FIFO.

8.2.2 Features

- Programmable system interface type When performing cell mapping/demapping, the system interface can be programmed as a UTOPIA Level 2 Bus, a UTOPIA Level 3 Bus, a POS-PHY Level 2 Bus, or a POS-PHY Level 3 (or SPI-3) Bus. When performing packet mapping/demapping, the system interface can be programmed as a POS-PHY Level 2 Bus or a POS-PHY Level 3 (or SPI-3) Bus.
- Selectable system interface bus width The data bus can be a 16-bit or 8-bit bus at operations speeds up to 52 MHz.
- Supports multiple ports on the system interface Each T1 or E1 line has its own port address for access via the system interface.
- **Supports per-port system loopback** Each port can be placed in system loopback which causes cells/packets from the transmit FIFO to be looped back to the receive FIFO.
- System interface byte reordering In 16-bit modes, the received/transmitted order of the bytes transferred across the system interface is programmable. i.e., the first byte received/transmitted by ATM cell / packet processing can be transferred in [15:8] or [7:0].

8.2.6 System Interface Bus Controller

The Transmit and Receive System Interface Bus Controller can be programmed to operate as a UTOPIA Level 2, UTOPIA Level 3, POS-PHY Level 2, or POS-PHY Level 3 (or SPI-3) bus controller. It controls the system interface bus timing and provides a common interface to the Transmit and Receive FIFO for FIFO status polling and cell/packet data transfer. Normally, the first byte transmitted is transferred across the system interface as the most significant byte (TDATA[15:8] in 16-bit mode). If byte reordering is enabled, the first byte transmitted is transferred across the system interface as the least significant byte (TDATA[7:0]). On the receive side, the first byte received is transferred across the system interface as the most significant byte (RDATA[15:8] in 16-bit mode). If byte reordering is enabled, the first byte received is transferred across the system interface as the least significant byte (RDATA[7:0]).

See <u>Figure 8-1</u> and <u>Figure 8-2</u>. Byte reordering is ignored in 8-bit mode.

Figure 8-1 Normal Packet Format in 16-Bit Mode

Bit 15	Bit 0	
Byte 1	Byte 2	
Byte 3	Byte 4	
•	•	
•	•	
•	•	
Byte 2n-3	Byte 2n-2	
Byte 2n-1	Byte 2n	

1st Transfer 2nd Transfer

(n-1)th Transfer nth Transfer

Figure 8-2 Byte Reordered Packet Format in 16-Bit Mode

Bit 15	Bit 0	
Byte 2	Byte 1	1 st Transfer
Byte 4	Byte 3	2 nd Transfer
•	•	
•	•	
•	•	
Byte 2n-2	Byte 2n-3	(n-1)th Transfer
Byte 2n	Byte 2n-1	nth Transfer

8.2.6.4 UTOPIA Level 2, Transmit Side

In UTOPIA Level 2, an ATM layer device pushes cells across the system interface. The ATM layer device polls the individual ports of the DS26556 to determine which ports have space available for a cell, and selects a port for cell transfer. More than one PHY layer device can be present on a UTOPIA Level 2 bus. Whether or not the HEC byte is transferred with the cells is programmable.

The Transmit System Interface Bus Controller accepts a transmit clock (TSCLK), transmit address (TADR[4:0]), transmit enable (TEN), and a transmit data bus consisting of transmit data (TDATA[15:0]), transmit parity (TPRTY), and transmit start of cell (TSOX). It outputs transmit direct cell available (TDXA) and transmit polled cell available (TPXA) signals. The transmit data bus is used to transfer cell data whenever one of the ports is selected for cell data transfer. TSOX is asserted during the first transfer of a cell, cell data is transferred on TDATA, and the data bus parity is indicated on TPRTY. All signals are sampled or updated using TSCLK. The TDXA and TPXA signals are used to indicate when the Transmit FIFO has space available for a programmable number of cells. There is a TDXA for each port in the device. TDXA goes high when the associated port's Transmit FIFO has more space available than a programmable number of cells. TDXA goes low when the associated port's Transmit FIFO is full (does not have space for another cell). TPXA reflects the current status of a port's TDXA signal when the port is polled. The TPXA signal is tri-stated unless one of the ports is being polled for FIFO fill status.

8.2.6.5 UTOPIA Level 3, Transmit Side

In UTOPIA Level 3, the ATM layer device pushes cells across the system interface. The ATM layer device polls the individual ports of the DS26556 to determine which ports have space available for a cell, and selects a port for cell transfer. Only one PHY layer device can be present on a UTOPIA Level 3 bus. Whether or not the HEC byte is transferred with the cells is programmable.

The Transmit System Interface Bus Controller accepts a transmit clock (TSCLK), transmit address (TADR[7:0]), transmit enable (TEN), and a transmit data bus consisting of transmit data (TDATA[15:0]), transmit parity (TPRTY), and transmit start of cell (TSOX). It outputs transmit direct cell available (TDXA) and transmit polled cell available (TPXA) signals. The transmit data bus is used to transfer cell data whenever one of the ports is selected for cell data transfer. TSOX is asserted during the first transfer of a cell, cell data is transferred on TDATA, and the data bus parity is indicated on TPRTY. All signals are sampled or updated using TSCLK. The TDXA and TPXA signals are used to indicate when the Transmit FIFO has space available for a programmable number of cells.

There is a TDXA for each port in the device. TDXA goes high when the associated port's Transmit FIFO has more space available than a programmable number of cells. TDXA goes low when the associated port's Transmit FIFO is full (does not have space for another cell). TPXA reflects the current status of a port's TDXA signal when the port is polled. The TPXA signal is always driven.

8.2.6.6 UTOPIA Level 2, Receive Side

In UTOPIA Level 2, the ATM layer device pulls cells across the system interface. The ATM layer device polls the individual ports to determine which ports have cells available, and selects a port for cell transfer. More than one PHY layer device can be present on a UTOPIA Level 2 bus. Whether or not the HEC byte is transferred with the cells is programmable.

The Receive System Interface Bus Controller accepts a receive clock (RSCLK), receive address (RADR[4:0]), and receive enable (\overline{REN}) . It outputs a receive data bus consisting of receive data (RDATA[15:0]), receive parity (RPRTY), and receive start of cell (RSOX), as well as, receive direct cell available (RDXA) and receive polled cell available (RPXA) signals. The receive bus is used to transfer cell data whenever one of the ports is selected for cell data transfer. RSOX is asserted during the first transfer of a cell, cell data is transferred on RDATA, and the data bus parity is indicated on RPRTY. All signals are sampled or updated using RSCLK. The data bus is tri-stated unless \overline{REN} is asserted (low) and one of the ports is selected for data transfer. The RDXA and RPXA signals are used to indicate when the Receive FIFO has a programmable number of cells available for transfer. There is an RDXA for each port in the device. RDXA goes high when the associated port's Receive FIFO contains more than a programmable number of cells. RDXA goes low when the associated port's Receive FIFO is empty (does not contain any cells). RPXA reflects the current status of a port's RDXA signal when the port is polled. The RPXA signal is tri-stated unless one of the ports is being polled for FIFO fill status.

8.2.6.2 UTOPIA Level 3, Receive Side

In UTOPIA Level 3, the ATM layer device pulls cells across the system interface. The ATM layer device polls the individual ports to determine which ports have cells available, and selects a port for cell transfer. Only one PHY layer device can be present on a UTOPIA Level 3 bus. Whether or not the HEC byte is transferred with the cells is programmable.

The Receive System Interface Bus Controller accepts a receive clock (RSCLK), receive address (RADR[7:0]), and receive enable (\overline{REN}) . It outputs a receive data bus consisting of receive data (RDATA[15:0]), receive parity (RPRTY), and receive start of cell (RSOX), as well as, receive direct cell available (RDXA) and receive polled cell available (RPXA) signals. The receive data bus is used to transfer cell data whenever one of the ports is selected for cell data transfer. RSOX is asserted during the first transfer of a cell, cell data is transferred on RDATA, and the data bus parity is indicated on RPRTY. All signals are sampled or updated using RSCLK. The data bus is always driven. The RDXA and RPXA signals are used to indicate when the Receive FIFO has a programmable number of cells available for transfer. There is an RDXA for each port in the device. RDXA goes high when the associated port's Receive FIFO contains more than a programmable number of cells. RDXA goes low when the associated port's Receive FIFO is empty (does not contain any cell ends). RPXA reflects the current status of a port's RDXA signal when the port is polled. The RPXA signal is always driven.

8.2.6.3 POS-PHY Level 2, Transmit Side

In POS-PHY Level 2, the Link layer device pushes packets across the system interface. The Link layer device polls the individual ports of the DS26556 to determine which ports have space available for packet data, and selects a port for packet data transfer. More than one PHY layer device can be present on a POS-PHY Level 2 bus.

The Transmit System Interface Bus Controller accepts a transmit clock (TSCLK), transmit address (TADR[4:0]), transmit enable (TEN), and a transmit data bus consisting of transmit data (TDATA[15:0]), transmit parity (TPRTY), transmit start of packet (TSOX), transmit end of packet (TEOP), transmit error (TERR), and transmit modulus (TMOD). It outputs transmit direct packet available (TDXA), transmit polled packet available (TPXA), and transmit selected packet available (TSPA) signals. The transmit data bus is used to transfer packet data whenever one of the ports is selected for packet data transfer. TSOX is asserted during the first transfer of a packet, TEOP is asserted during the last transfer of a packet, TERR is asserted when a packet has an error, TMOD indicates the number of bytes transferred on TDATA during the last transfer of a packet, packet data is transferred on TDATA, and the data bus parity is indicated on TPRTY. All signals are sampled and updated using TSCLK. The TDXA, TPXA, and TSPA signals are used to indicate when the Transmit FIFO has space available for a programmable number of bytes. There is a TDXA for each port in the device. TDXA goes high when the associated port's Transmit FIFO has space available for more than a programmable number of bytes. TDXA goes low when the associated port's Transmit FIFO is full. TPXA reflects the current status of a port's TDXA signal when the system interface is in polled mode. TSPA reflects the current status of a port's TDXA signal when the port is selected. The TSPA signal is tri-stated unless TEN is asserted (low) and one of the ports is selected for packet data transfer. The TPXA signal is tri-stated unless one of the ports is being polled for FIFO fill status.

8.2.6.4 POS-PHY Level 3 (or SPI-3), Transmit Side

In POS-PHY Level 3 (or SPI-3), the Link layer device pushes packets across the system interface. The Link layer device polls the individual ports of the DS26556 to determine which ports have space available for packet data, and selects a port for packet data transfer. Only one PHY layer device can be present on a POS-PHY Level 3 (or SPI-3) bus.

The Transmit System Interface Bus Controller accepts a transmit clock (TSCLK), transmit enable (TEN), and a transmit data bus consisting of transmit data (TDATA[15:0]), transmit parity (TPRTY), transmit start of packet (TSOX), transmit end of packet (TEOP), transmit error (TERR), transmit start of transfer (TSX), and transmit modulus (TMOD). It outputs transmit direct packet available (TDXA), transmit polled packet available (TPXA), and transmit selected packet available (TSPA) signals. The transmit bus is used to transfer packet data whenever one of the ports is selected for packet data transfer. TSOX is asserted during the first transfer of a packet, TEOP is asserted during the last transfer of a packet, TERR is asserted when a packet has an error, TMOD indicates the number of bytes transferred on TDATA during the last transfer of a packet, TSX is asserted when the selected FIFO's port address has been placed on TDATA, packet data is transferred on TDATA, and the data bus parity is indicated on TPRTY. All signals are sampled and updated using TSCLK. The TDXA, TPXA, and TSPA signals are used to indicate when the Transmit FIFO has space available for a programmable number of bytes. There is a TDXA for each port in the device. TDXA goes high when the associated port's Transmit FIFO has space available for more than a programmable number of bytes. TDXA goes low when the associated port's Transmit FIFO is full. TPXA reflects the current status of a port's TDXA signal when the port is polled. TSPA reflects the current status of a port's TDXA signal when the port is selected. The TPXA and TSPA signals are always driven.

8.2.6.5 POS-PHY Level 2, Receive Side

In POS-PHY Level 2, the Link layer device pulls packets across the system interface. The Link layer device polls the individual ports to determine which ports have packet data available, and selects a port for packet data transfer. More than one PHY layer device can be present on a POS-PHY Level 2 bus.

The Receive System Interface Bus Controller accepts a receive clock (RSCLK), receive address (RADR[4:0]), and receive enable (\overline{REN}) . It outputs a receive data bus consisting of receive data (RDATA[15:0]), receive parity (RPRTY), receive start of packet (RSOX), receive end of packet (REOP), receive error (RERR), receive data valid (RVAL), and receive modulus (RMOD), as well as, a receive direct packet available (RDXA) signal and a receive polled packet available (RPXA) signal. The receive data bus is used to transfer packet data whenever one of the ports is selected for packet data transfer. RSOX is asserted during the first transfer of a packet, REOP is asserted during the last transfer of a packet, RERR is asserted when a packet has an error, RMOD indicates the number of bytes transferred on RDATA during the last transfer of a packet, RVAL is asserted when the receive data bus is valid, RDATA transfers packet data, and RPRTY indicates the data bus parity. All signals are sampled and updated using RSCLK. The RDXA and RPXA signals are used to indicate when the Receive FIFO has a programmable number of bytes or an end of packet available for transfer. There is an RDXA for each port in the device. RDXA goes high when the associated port's Receive FIFO contains more than a programmable number of bytes or an end of packet. RDXA goes low when the associated port's Receive FIFO is empty. RPXA reflects the current status of a port's RDXA signal when the port is polled. The data bus is tri-stated unless REN is asserted (low) and one of the ports is selected for packet data transfer. The RPXA signal is tri-stated unless one of the ports is being polled for FIFO fill status.

8.2.6.6 POS-PHY Level 3 (or SPI-3), Receive Side

In POS-PHY Level 3, the DS26556 pushes packets across the system interface. The DS26556 selects a port for packet data transfer when it has packet data available. Only one PHY layer device can be present on a POS-PHY Level 3 (or SPI-3) bus.

The Receive System Interface Bus Controller accepts a receive clock (RSCLK) and receive enable (REN). It outputs a receive data bus consisting of receive data (RDATA[15:0]), receive parity (RPRTY), receive start of packet (RSOX), receive end of packet (REOP), receive error (RERR), receive data valid (RVAL), receive start of transfer (RSX), and receive modulus (RMOD). The receive data bus is used to transfer packet data whenever one of the ports has packet data available for transfer. RSOX is asserted during the first transfer of a packet, REOP is asserted during the last transfer of a packet, RERR is asserted when a packet has an error, RMOD indicates the number of bytes transferred on RDATA during the last transfer of a packet, RSX is asserted when the Link layer port address has been placed on RDATA, RVAL is asserted when the receive data bus is valid, RDATA transfers packet data, and RPRTY indicates the data bus parity. All signals are sampled and updated using RSCLK. The data bus is always driven.

In POS-PHY Level 3 (or SPI-3) the Receive System Interface Bus Controller determines which port to transfer data from using a round-robin arbitration scheme (the ports are checked one after another in numerical order according to their line number x. A transfer is initiated from a port when it is not almost empty (contains more data than the almost empty level or contains an end of packet). Transfer from a port is terminated when the maximum burst length has been transferred, the FIFO is emptied, or an end of packet is transferred while the Receive FIFO is almost empty (contains the same or less data than the almost empty level and does not contain an end of packet). When a transfer is terminated, a transfer is initiated from the next available port that is not almost empty. At the end of a packet or between a transfer from one port and the transfer from the next port, RVAL will go low for a programmable number of clock cycles (0-7) to allow the POS-PHY master to halt data transfer. At the end of a packet, data transfer will continue from the same port if no other port has data available, and the port is not almost empty. The maximum burst length is programmable (8 – 256 bytes in four byte increments), or can be disabled.

8.3 ATM Cell / HDLC Packet Processing

8.3.1 General Description

The ATM cell / packet processing demaps the ATM cells or HDLC packets from the receive data stream and maps ATM cells or HDLC packets into the transmit data stream. ATM cell / packet processing supports any framed or unframed bit synchronous or byte synchronous (octet aligned) data stream.

The receive direction extracts the payload from physical data stream, performs cell/packet processing on the individual lines, and stores the cell/packet data from each line in the FIFO.

The transmit direction removes the cell/packet data for each line from the FIFO, performs cell/packet processing for each individual line and inserts the payload into the physical data stream.

Refer to for the location of the Cell/Packet processing block in the DS26556 devices.

8.3.2 Features

General

- Supports bit or byte wide, framed or unframed data lines Each port is programmable as bit synchronous or octet aligned, the data stream can be framed or unframed, and the clock can be continuous or gapped.
- **Bit reordering** The received/transmitted order of the bits as transferred across the system interface is programmable on a per-port basis. That is, in bit synchronous mode, the first bit received/transmitted by ATM cell/packet processing can be transferred in bit position 7 (15 or 7) or bit position 0 (8 or 0). In octet aligned mode, the bit received/transmitted by ATM cell/packet processing in bit position 7 can be transferred in bit position 7 (15 or 7) or bit position 0 (8 or 0).

ATM Cell Processor

- Programmable HEC insertion and extraction The transmit side can be programmed to accept cells from
 the system interface that do or do not contain a HEC byte. If cells are transferred without a HEC byte, the HEC
 byte will be computed and inserted. If cells are transferred with a HEC byte, then the transferred HEC byte can
 be programmed to be passed through or overwritten with a newly calculated HEC. The receive side can be
 programmed to send cells to the system interface that do or don't contain the HEC byte.
- **Programmable erred cell insertion** An HEC error mask can be programmed for insertion of single or multiple errors individually or continuously at a programmable rate.
- **Programmable transmit cell synchronization** The transmit data line can be provisioned to be bit synchronous or octet aligned.
- **Programmable header cell pass-through** Receive cell filtering can pass-through only those cells that matching a programmable header value.
- Selectable idle/unassigned/invalid/programmable header cell padding and filtering Transmit cell padding can be programmed for idle cell or programmable header cell padding. The padded cell payload byte contents are also programmable. Receive cell filtering can be programmed for any combination of idle cell, unassigned cell, invalid cell, or programmable header cell filtering. Or, all cell filtering can be disabled.
- Optional header error correction Receive side single bit header error correction can enabled.

- Separate corrected and uncorrected erred cell counts Separate counts of erred cells containing a corrected HEC error, and cells containing non-corrected HEC errors are kept.
- Optional HEC uncorrected erred cell filtering Uncorrected erred cell extraction can be disabled.
- Selectable cell scrambling/descrambling Cell scrambling and/or descrambling can be disabled. The scrambling can be a self-synchronous scrambler ($x^{43} + 1$) over the payload only, a self-synchronous scrambler over the entire cell, or a Distributed Sample Scrambler ($x^{31} + x^{28} + 1$).
- Optional HEC calculation coset polynomial addition The performance of coset polynomial addition during HEC calculation can be disabled.

HDLC Packet Processor

- Programmable FCS insertion and extraction The transmit side can be programmed to accept packets from
 the system interface that do or don't contain FCS bytes. If packets are transferred without FCS bytes, the FCS
 will be computed and appended to the packet. If packets are transferred with FCS bytes, then the FCS can be
 programmed to be passed through or overwritten with a newly calculated FCS. The receive side can be
 programmed to send packets to the system interface that do or don't contain FCS bytes.
- **Programmable transmit packet synchronization** The transmit data line can be provisioned to be bit synchronous or octet aligned.
- **Programmable FCS type** The FCS can be programmed to be a 16-bit FCS or a 32-bit FCS.
- **Supports FCS error insertion** FCS error insertion can be programmed for insertion of errors individually or continuously at a programmable rate.
- **Supports bit or byte stuffing/destuffing** The bit or byte synchronous (octet aligned) mode determines the bit or byte stuffing/destuffing.
- **Programmable packet size limits** The receive side can be programmed to abort packets over a programmable maximum size or under a programmable minimum size. The maximum packet size allowed is 65,535 bytes.
- Selectable packet scrambling/descrambling Packet scrambling and/or descrambling can be disabled.
- Separate FCS erred packet and aborted packet counts Separate counts of aborted packets, size violation packets, and FCS erred packets are kept.
- Optional erred packet filtering Erred packet extraction can be disabled
- **Programmable inter-frame fill** The transmit inter-frame fill value is programmable.

8.3.3 Transmit Cell/Packet Processor

The Transmit Cell Processor and Transmit Packet Processor both receive the 32-bit parallel data stream from the Transmit FIFO, however, only one of the processors will be enabled. Which processor is enabled is determined by the system interface mode. In UTOPIA mode, the Transmit Cell Processor is enabled. In POS-PHY mode, if the *CPC1.PMCPE* bit is low, the Transmit Packet Processor is enabled. If the *CPC1.PMCPE* bit (is high, the Transmit Cell Processor is enabled.

8.3.4 Receive Cell/Packet Processor

The Receive Cell Processor and Receive Packet Processor both receive the incoming data stream from the Receive Framer (minus all overhead and stuff data), however, only one of the processors will be enabled. The other will be disabled. Which processor is enabled is determined by the system interface mode. In UTOPIA mode, the Receive Cell Processor is enabled. In POS-PHY mode, if the *CPC1.PMCPE* bit is low, the Receive Packet Processor is enabled. If the CPC1.PMCPE bit is high, the Receive Cell Processor is enabled.

The bits in a byte are received MSB first, LSB last. When they are output serially, they are output MSB first, LSB last. The bits in a byte in an incoming signal are numbered in the order they are received , 1 (MSB) to 8 (LSB). However, when a byte is stored in a register, the MSB is stored in the highest numbered bit (7], and the LSB is stored in the lowest numbered bit (0). This is to differentiate between a byte in a register and the corresponding byte in a signal.

8.3.5 Cell Processor

8.3.5.1 Transmit Cell Processor

The Transmit Cell Processor accepts data from the Transmit FIFO and performs bit reordering, cell padding, HEC processing, cell error insertion, and cell scrambling. The data output from the Transmit Cell Processor can be either a serial data stream (bit synchronous mode) or an 8-bit parallel data stream (octet-aligned mode). Cell processing can be disabled. Disabling cell processing disables cell padding, HEC processing, and cell error insertion. Only bit reordering and cell scrambling are not disabled.

When cell processing is disabled, data is continually read out of the Transmit FIFO. When the Transmit FIFO is empty, the output data stream is padded with FFh until the Transmit FIFO contains more data than the "almost empty" level.

The 32-bit data words read from the Transmit FIFO are multiplexed into an 8-bit parallel data stream and passed on to bit reordering.

Bit reordering changes the bit order of each byte. If bit reordering is enabled, the incoming 8-bit data stream DT[7:0] with DT[7] being the MSB and DT[0] being the LSB is rearranged so that the MSB is in DT[0] and the LSB is in DT[7] of the outgoing data stream DT[7:0]. In bit synchronous mode, DT[7] is the first bit transmitted. If cell processing is disabled the data stream is passed on to cell scrambling, bypassing cell padding, HEC processing, and cell error insertion.

Cell padding inserts fill cells. After a cell end, fill cells are inserted into the data stream if the Transmit FIFO does not contain a complete cell. The fill cell type and fill cell payload value are programmable. The resulting data stream is passed on to HEC processing. If cell processing is disabled, cell padding will not be performed.

HEC processing calculates a HEC and inserts it into the cell. HEC calculation is a CRC-8 calculation over the four header bytes. The polynomial used is $x^8 + x^2 + x + 1$. The coset polynomial, $x^6 + x^4 + x^2 + 1$, is added (modulo 2) to the residue. The calculated HEC is then inserted into the byte immediately following the header. HEC coset polynomial addition is programmable. If the cell received from the Transmit FIFO contains a HEC byte, the received HEC byte can be passed through or overwritten with the calculated HEC byte. HEC byte pass through is programmable. If the cell received from the Transmit FIFO does not contain a HEC byte, the calculated HEC byte is inserted into the cell. If cell processing is disabled, HEC processing will not be performed.

Cell error insertion inserts errors into the HEC byte. The HEC bits to be errored are programmable. Error insertion can be controlled by a register or by the manual error insertion input (TMEI). The error insertion initiation type (register or input) is programmable. If a register controls error insertion, the number and frequency of the errors are programmable. If cell processing is disabled, cell error insertion will not be performed.

Cell scrambling can scramble the 48-byte cell payload, scramble the entire cell data stream, or scramble the data stream with a Distributed Sample Scrambler (DSS). If the payload or the entire data stream is scrambled, a self-synchronous scrambler with a generation polynomial of $x^{43} + 1$ is used. For payload scrambling, the scrambler scrambles the 48-byte payload, and does not scramble the four header or the HEC bytes. For a DSS scrambled data stream, a distributed sample scrambler with a generation polynomial of $x^{31} + x^{28} + 1$ is used for scrambling. The transmit DSS scrambler scrambles the 48-byte payload and the four byte header. It scrambles the first HEC bit (HEC[1]) with the first transmit DSS scrambler sample (the transmit DSS scrambler bit from 211 bits earlier), scrambles the second HEC bit (HEC[2]) with the second transmit DSS scrambler sample (the current transmit DSS scrambler bit), and does not scramble the remaining HEC bits (HEC[3:8]). DSS scrambling can only be performed in bit synchronous mode. Cell scrambling is programmable (payload, entire data stream, or DSS). If cell processing is disabled, the entire data stream will be scrambled whenever scrambling is enabled

Once all cell processing has been completed, in bit synchronous mode, the 8-bit parallel data stream is multiplexed into a serial data stream and passed on. In octet aligned mode, the 8-bit parallel data stream is passed on.

8.3.5.2 Receive Cell Processor

The Receive Cell Processor performs cell descrambling, cell delineation, cell filtering, header pattern comparison, OCD detection, HEC error monitoring, HEC byte filtering, and bit reordering. The data coming in can be either a serial data stream (bit synchronous mode) or an 8-bit parallel data stream (octet aligned mode). The type of data stream received affects cell descrambling and cell delineation, however, it does not affect OCD detection, HEC error monitoring, cell filtering, header pattern comparison, HEC byte filtering, or bit reordering. Cell processing can be disabled (clear-channel enable). Disabling cell processing disables cell delineation, OCD detection, cell filtering, header pattern comparison, HEC error monitoring, and HEC byte filtering. Only cell descrambling and bit reordering are not disabled.

Cell descrambling can descramble the 48-byte cell payload, descramble the entire cell data stream, or descramble a data stream scrambled by a Distributed Sample Scrambler (DSS). If the payload or the entire data stream is descrambled, a self-synchronous scrambler with a generation polynomial of $x^{43} + 1$ is used for descrambling. Payload descrambling descrambles the 48-byte payload, and does not descramble the four header bytes or the HEC byte. For a DSS scrambled data stream, a distributed sample scrambler with a generation polynomial of $x^{31} + x^{28} + 1$ is used for descrambling. The receive DSS scrambler is synchronized to the transmit DSS scrambler by DSS scrambler synchronization. DSS descrambling can only be performed in bit synchronous mode. Cell descrambling is programmable (payload, entire data stream, or DSS). In bit synchronous mode, descrambling is performed one bit at a time, and the serial data stream is demultiplexed in to an 8-bit data stream before being passed on. In octet aligned mode, descrambling is performed 8-bits at a time, and only payload or entire data stream descrambling can be performed. When cell processing is disabled, the entire data stream will be descrambled if descrambling is enabled.

DSS Scrambler Synchronization synchronizes the receive DSS scrambler with the transmit DSS scrambler used to scramble the incoming data stream. The DSS Scrambler Synchronization state machine has three states: "Acquisition", "Verification", and "Steady State". The "Acquisition" state adds the transmit DSS scrambler samples from 16 incoming cells into the receive DSS scrambler (32 samples total). The samples are derived from the two MSBs (HEC[1:2]) of the incoming HEC byte. Each time the samples in a cell are loaded into the receive DSS scrambler, the confidence counter is incremented. When the confidence counter reaches 16, DSS scrambler synchronization transitions to the "Verification" state. The "Verification" state verifies the samples in the incoming cells by comparing the samples from the cell with the corresponding receive DSS scrambler bits. Each time both samples from a cell match the corresponding receive DSS scrambler bits, the confidence counter is incremented. Each time one of the samples from a cell does not match the corresponding receive DSS scrambler bit, the confidence counter is decremented if the confidence counter reaches 24, DSS scrambler synchronization transitions to the "Steady State" state. If the confidence counter reaches 8, DSS scrambler synchronization transitions to the "Acquisition" state. The "Steady State" state continues to verify the samples in the incoming cells. Each time both samples from a cell match the corresponding receive DSS scrambler bits, the confidence counter is incremented (maximum count = 24). Each time one of the samples from a cell does not match the corresponding receive DSS scrambler bit, the confidence counter is decremented. If the confidence counter reaches 16, DSS scrambler synchronization transitions to the "Acquisition" state. The DSS scrambler synchronization state diagram is shown in Figure 8-4. DSS scrambler synchronization starts in the "Acquisition" state. Note: All ATM cells are discarded during the "Acquisition" and "Verification" states.

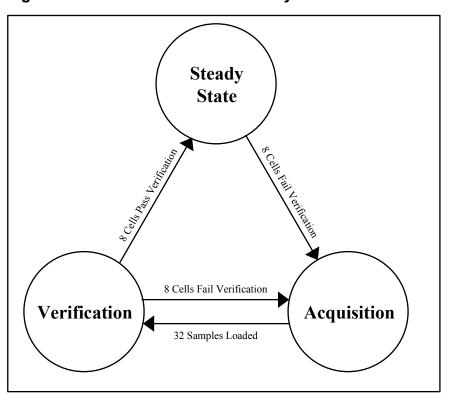
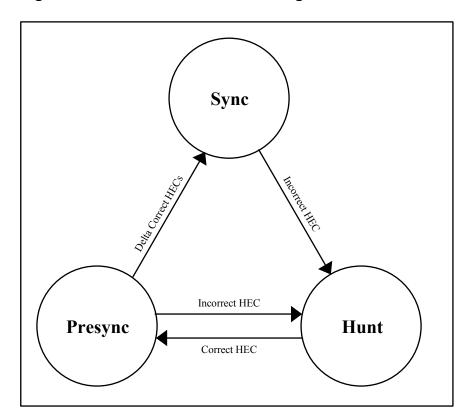


Figure 8-4 Receive DSS Scrambler Synchronization State Diagram

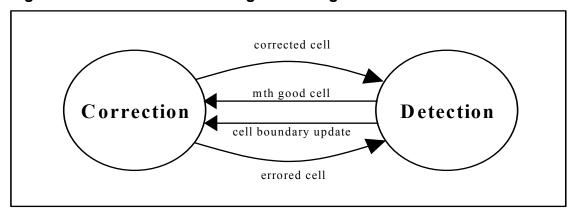

If cell processing is disabled, a cell boundary is arbitrarily chosen, and the data is divided into "cells" whose size is programmable. If HEC transfer is enabled in the receive system interface, the incoming data stream will be divided into 53-byte "cells". If HEC transfer is disabled in the receive system interface, the data is divided into 52-byte "cells". These cells are then passed on to bit reordering bypassing cell delineation, OCD detection, cell filtering, header pattern comparison, HEC error monitoring, and HEC byte filtering.

Cell delineation determines the cell boundary by identifying the header bytes and the HEC byte of a cell, and detects an out of cell delineation (OCD) condition or a change of cell delineation (COCD). Cell delineation is performed offline, and the data path cell boundary is only updated by cell delineation if an OCD condition is present. Performing cell delineation off-line results in fewer cells being discarded when the cell boundary changes. If DSS scrambling is enabled (bit synchronous mode only), only the six least significant bits (LSBs) of the HEC (HEC[3:8]) are used for cell delineation, as the two most significant bits (MSBs) are scrambled. An OCD condition is declared if seven consecutive cells are received with incorrect HEC bytes. An OCD condition is terminated if "Delta" consecutive cells are received with correct HEC bytes, if cell delineation updates the data path cell boundary. All ATM cells are discarded during an OCD condition. A COCD is declared when Cell Delineation updates the data path cell boundary with a cell boundary that is different from the current data path cell boundary.

Cell delineation has three states: "Hunt", "Presync", and "Sync". The "Hunt" state searches for the cell boundary. Each time slot is checked for an HEC byte (six LSBs of the HEC byte if DSS is enabled). The cell boundary is set once the header and HEC bytes are identified, and cell delineation transitions to the "Presync" state. The "Presync" state verifies the cell boundary identified in the "Hunt" state. The HEC is checked in each incoming cell. If "Delta" cells (including the "Hunt" to "Presync" transition cell) with a correct HEC are received, cell delineation transitions to the "Sync" state. If a cell with an incorrect HEC is received, cell delineation updates the data path cell boundary if an OCD condition is present. If a cell with an incorrect HEC is received, cell delineation transitions to the "Hunt" state. The cell delineation state diagram is shown in Figure 8-5. The cell delineation process starts in the "Hunt" state. In octet-aligned mode, the HEC check is performed one byte at a time, so up to 53 checks may be needed to find the cell boundary. In bit synchronous mode, the HEC check is performed one bit at a time, so up to 424 checks may be needed to find the cell boundary. HEC calculation coset polynomial addition can be disabled. The cell delineation process can be programmed to ignore the first header byte (for DQDB applications) when calculating the HEC. If cell processing is disabled, cell delineation will not be performed. A "Delta" of eight is used for unframed modes and a "Delta" of six is used for framed modes. In bit synchronous

mode, the serial data stream is demultiplexed into an 8-bit parallel data stream (as determined by the data path cell boundary updated) before being passed on to cell filtering.

Figure 8-5 Cell Delineation State Diagram


Cell filtering discards specific cell types. The 8-bit parallel data stream is monitored for idle, unassigned, and invalid cells. (Cells discarded during cell delineation or DSS descrambling are not monitored for cell filtering.) If cell filtering is enabled and the indicated cell type is found, the cell is discarded. Idle cell, unassigned cell, and invalid cell filtering are programmable. Idle cells have a header value of 00000000 00000000 00000000 00000000. Unassigned cells have a header value of xxxx0000 00000000 00000000 0000xxx0. Where x can be any value. Invalid cells have a header value of xxxxyyyy yyyy0000 00000000 0000xxx. Where x can be any value and yyyyyyyy can be any value other than 00000000. All cells discarded are counted. If cell processing is disabled, cell filtering will not be performed.

Header pattern comparison checks for a specific pattern in the header, and either discards and counts cells with a matching header (discard match), discards and counts cells without a matching header (discard no match), counts cells with a matching header (count match), or counts cells without a matching header (count no match). (Cells discarded during OCD detection, DSS descrambling, or cell filtering processes are not monitored for header pattern comparison.) The 8-bit parallel data stream is monitored for cells that have a header that matches the comparison header. In discard match mode, cells with a matching header are counted and discarded. In discard no match mode, cells without a matching header are counted and discarded. In count match mode, cells with a matching header are counted and passed on. In count no match mode, cells without a matching header are counted and passed on. The comparison header and comparison header pattern mode are programmable. If cell processing is disabled, header pattern comparison will not be performed.

HEC error monitoring checks the HEC and detects errored and correctable cell headers. (Cells discarded during OCD detection, DSS descrambling, cell filtering, or header pattern comparisons are not monitored for HEC errors.). HEC Error Monitoring has two states, the "Correction" and "Detection" states. In the "Correction" state, cells received without any header errors (good cells) are passed on. Cells received with a single header error (correctable cells) are corrected and passed on. The corrected cell count is incremented. Cells received with multiple errors are considered errored cells. If errored cell extraction is enabled, errored cells are discarded, and the errored cell count is incremented. If errored cell extraction is disabled, errored cells are passed on. If a cell is

received with an incorrect HEC, HEC error monitoring transitions to the "Detection" state. In the "Detection" state, good cells are passed on. Cells received with one or more errors are considered errored cells. If m cells are received with a correct HEC or the data path cell boundary is updated, HEC error monitoring will transition to the "Correction" state. The value of m is programmable (1, 2, 4, or 8). The HEC Error Monitoring state diagram is shown in Figure 8-6. HEC Error Monitoring starts in the "Correction" state. If header error correction is disabled, HEC error monitoring will remain in the "Detection" state. If cell processing is disabled, HEC error monitoring will not be performed.

Figure 8-6 HEC Error Monitoring State Diagram

HEC byte filtering discards the HEC byte. If HEC transfer is disabled in the receive system interface, the HEC byte is extracted from the cell and discarded. The resulting 52-byte cell is then passed on for storage in the Receive FIFO. If HEC transfer is enabled, the 53-byte cell is passed on for storage in the Receive FIFO. If cell processing is disabled, HEC byte filtering will not be performed.

Bit reordering changes the bit order of each byte. If bit reordering is enabled, the incoming 8-bit data stream DT[7:0] with DT[7] being the MSB and DT[0] being the LSB is rearranged so that the MSB is in DT[0] and the LSB is in DT[7] of the outgoing FIFO data stream DT[7:0]. In bit synchronous mode, DT[7] is the first bit received.

Once all cell processing has been completed, the 8-bit parallel data stream is demultiplexed into a 32-bit parallel data stream and passed on to the Receive FIFO. Cells are stored in the Receive FIFO in a cell format. regardless of whether or not they are transferred across a UTOPIA or POS-PHY interface.

Figure 8-7 Cell Format for 53-Byte Cell With 16-Bit Data Bus

Bit 15	Bit 0	
Header 1	Header 2	1 st Transfer
Header 3	Header 4	2 nd Transfer
HEC	00h	3 rd Transfer
Payload 1	Payload 2	4 th Transfer
•	•	
Payload 45	Payload 46	26 th Transfer
Payload 47	Payload 48	27 th Transfer

Figure 8-8 Cell Format for 52-Byte Cell With 16-Bit Data Bus

Bit 15	Bit 0	
Header 1	Header 2	1 st Transfer
Header 3	Header 4	2 nd Transfer
Payload 1	Payload 2	3 rd Transfer
•	•	
•	•	
•	•	
Payload 45	Payload 46	25 th Transfer
Payload 47	Payload 48	26 th Transfer

8.3.6 Packet Processor

8.3.6.1 Transmit Packet Processor

The Transmit Packet Processor accepts data from the Transmit FIFO performs bit reordering, FCS processing, packet error insertion, stuffing, packet abort sequence insertion, inter-frame padding, and packet scrambling. The data output from the Transmit Packet Processor can be either a serial data stream (bit synchronous mode) or an 8-bit parallel data stream (octet-aligned mode). The type of data stream output from the Transmit Packet Processor affects stuffing, abort insertion, inter-octet padding, inter-frame padding, and packet scrambling, however, it does not affect bit reordering, FCS processing, or packet error insertion. Packet processing can be disabled. Disabling packet processing disables FCS processing, packet error insertion, stuffing, packet abort sequence insertion, and inter-frame padding. Only bit reordering and packet scrambling are not disabled.

When packet processing is disabled, data is continually read out of the Transmit FIFO. When the Transmit FIFO is read empty, the output data stream will be padded with FFh until the Transmit FIFO contains more data than the "almost empty" level. The 32-bit data words read from the Transmit FIFO are multiplexed into an 8-bit parallel data stream and passed on to bit reordering.

Bit reordering changes the bit order of each byte. If bit reordering is enabled, the incoming 8-bit data stream DT[7:0] with DT[7] being the MSB and DT[0] being the LSB is rearranged so that the MSB is in DT[0] and the LSB is in DT[7] of the outgoing data stream DT[7:0]. In bit synchronous mode, DT[7] is the first bit transmitted. If packet processing is disabled the data stream is passed on to packet scrambling, bypassing FCS processing, packet error insertion, stuffing, packet abort sequence insertion, and inter-frame padding. If packet processing is disabled in bit synchronous mode, the serial data stream is demultiplexed in to an 8-bit data stream before being passed on.

FCS processing calculates a FCS and appends it to the packet. FCS calculation is a CRC-16 or CRC-32 calculation over the entire packet. The polynomial used for FCS-16 is $x^{16} + x^{12} + x^5 + 1$. The polynomial used for FCS-32 is $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$. The FCS is inverted after calculation. The FCS type is programmable. If FCS append is enabled, the calculated FCS is appended to the packet. If FCS append is disabled, the packet is transmitted without a FCS. The FCS append mode is programmable. If packet processing is disabled, FCS processing is not performed.

Packet error insertion inserts errors into the FCS bytes. A single FCS bit is corrupted in each errored packet. The FCS bit corrupted is changed from errored packet to errored packet. Error insertion can be controlled by a register or by the manual error insertion input (TMEI). The error insertion initiation type (register or input) is programmable. If a register controls error insertion, the number and frequency of the errors are programmable. If FCS append is disabled, packet error insertion will not be performed. If packet processing is disabled, packet error insertion is not performed.

Stuffing inserts control data into the packet to prevent packet data from mimicking flags. Stuffing is performed from the beginning of a packet until the end of a packet. In bit synchronous mode, the 8-bit parallel data stream is multiplexed into a serial data stream, and bit stuffing is performed. Bit stuffing consists of inserting a '0' directly following any five contiguous '1's. In octet aligned mode, byte stuffing is performed. Byte stuffing consists of detecting bytes that mimic flag and escape sequence bytes (7Eh and 7Dh), and replacing the mimic bytes with an escape sequence (7Dh) followed by the mimic byte exclusive ORed with 20h. If packet processing is disabled, stuffing is not performed.

Inter-frame padding inserts start flags, end flags and inter-frame fill between packets. There will be at least one flag plus a programmable number of additional flags between packets. In octet aligned mode, the inter-frame fill is flags. In bit synchronous mode, the inter-frame fill can be flags or all 1s followed by a start flag. If the inter-frame fill is all '1's, the number of '1's between the end and start flags may not be an integer number of bytes, however, there will be at least 15 consecutive '1's between the end and start flags. The bit synchronous mode inter-frame padding type is programmable. If packet processing is disabled, inter-frame padding is not performed.

Packet abort insertion inserts a packet abort sequences as necessary. If a packet abort indication is detected, a packet abort sequence is inserted and inter-frame padding is done until a packet start flag is detected. In bit synchronous mode, the abort sequence is FFh. In octet aligned mode, the abort sequence is 7D7Eh. If packet processing is disabled, packet abort insertion is not performed.

The packet scrambler is a x^{43} + 1 self-synchronous scrambler that scrambles the entire packet data stream. Packet scrambling is programmable.

Once all packet processing has been completed, in bit synchronous mode, the 8-bit parallel data stream is multiplexed into a serial data stream and passed on. In octet aligned mode, the 8-bit parallel data stream is passed on.

8.3.6.2 Receive Packet Processor

The Receive Packet Processor performs packet descrambling, packet delineation, inter-frame fill filtering, packet abort detection, destuffing, packet size checking, FCS error monitoring, FCS byte extraction, and bit reordering. The data coming in can be either a serial data stream or an 8-bit parallel data stream, depending on the framing mode The type of data stream received affects packet descrambling, packet delineation, inter-frame fill filtering, packet abort detection, and destuffing, however, it does not affect packet size checking, FCS error monitoring, FCS byte extraction, or bit reordering. Packet processing can be disabled (clear-channel enable). Disabling packet processing disables packet delineation, inter-frame fill filtering, packet abort detection, destuffing, packet size checking, FCS error monitoring, and FCS byte extraction. Only packet descrambling and bit reordering are not disabled.

The packet descrambler is a self-synchronous $x^{43} + 1$ descrambler that descrambles the entire packet data stream. Packet descrambling is programmable. If packet processing is disabled in bit synchronous mode, the serial data stream is demultiplexed in to an 8-bit data stream before being passed on.

If packet processing is disabled, a packet boundary is arbitrarily chosen, and the data is divided into "packets" whose size is programmable (maximum packet size setting). These packets are then passed on to bit reordering bypassing packet delineation, inter-frame fill filtering, packet abort detection, destuffing, packet size checking, FCS error monitoring, and FCS byte extraction.

Packet delineation determines the packet boundary by identifying a packet start or end flag. Each time slot is checked for a flag sequence (7Eh). Once a flag is found, it is identified as a start or end flag, and the packet boundary is set. If packet processing is disabled, packet delineation is not performed.

Inter-frame fill filtering removes the inter-frame fill between packets. When a packet end flag is detected, all data is discarded until a packet start flag is detected. In bit synchronous mode, the inter-frame fill can be flags or all '1's. When the interframe fill is all '1's, the number of '1's between the start and end flags does not need to be an integer number of bytes. In bit synchronous mode when inter-frame fill is flags, there may be only one flag between packets, or the flags may have a shared zero (011111101111110). In octet aligned mode, the inter-frame fill can only be flags, and there may be only one flag between packets. If packet processing is disabled, inter-frame fill filtering is not performed.

Packet abort detection searches for a packet abort sequence. Between a packet start flag and a packet end flag, if an abort sequence is detected, the packet is marked with an abort indication, the aborted packet count is incremented, and all subsequent data is discarded until a packet start flag is detected. In bit synchronous mode, the abort sequence is seven consecutive ones. In octet aligned mode, the abort sequence is 7D7Eh. If packet processing is disabled, packet abort detection is not performed.

Destuffing removes the extra data inserted to prevent data from mimicking a flag or an abort sequence. In bit synchronous mode, bit destuffing is performed. Bit destuffing consists of discarding any '0' that directly follows five contiguous '1's. In octet aligned mode, byte destuffing is performed. Byte destuffing consists of detecting an escape sequence (7Dh), discarding it and exclusive ORing the next byte with 20h. In bit synchronous mode, after destuffing is completed, the serial bit stream is demultiplexed into an 8-bit parallel data stream and passed on to packet size checking. If there is less than eight bits in the last byte, an invalid packet flag is raised, the packet is tagged with an abort indication, and the packet size violation count is incremented. In octet aligned mode, after destuffing is

completed, the 8-bit parallel data stream is passed on to packet size checking. If packet processing is disabled, destuffing is not performed.

Packet size checking checks each packet for a programmable maximum and programmable minimum size. As the packet data comes in, the total number of bytes is counted. If the packet length is below the minimum size limit, the packet is marked with an aborted indication, and the packet size violation count is incremented. If the packet length is above the maximum size limit, the packet is marked with an aborted indication, the packet size violation count is incremented, and all packet data is discarded until a packet start is received. The minimum and maximum lengths include the FCS bytes, and are determined after destuffing has occurred. If packet processing is disabled, packet size checking is not performed.

FCS error monitoring checks the FCS and aborts errored packets. If a FCS error is detected, the FCS errored packet count is incremented and the packet is marked with an aborted indication. The FCS type (16-bit or 32-bit) is programmable. If FCS processing or packet processing is disabled, FCS byte extraction is not performed.

FCS byte extraction discards the FCS bytes. If FCS extraction is enabled, the FCS bytes are extracted from the packet and discarded. If FCS extraction is disabled, the FCS bytes are stored in the receive FIFO with the packet. If FCS processing or packet processing is disabled, FCS byte extraction is not performed.

Bit reordering changes the bit order of each byte. If bit reordering is enabled, the incoming 8-bit data stream DT[7:0] with DT[7] being the MSB and DT[0] being the LSB is rearranged so that the MSB is in DT[0] and the LSB is in DT[7] of the outgoing FIFO data stream DT[7:0]. In bit synchronous mode, DT[7] is the first bit received.

Once all packet processing has been completed, the 8-bit parallel data stream is demultiplexed into a 32-bit parallel data stream and passed on to the Receive FIFO.

8.3.7 FIFO

8.3.7.1 Transmit FIFO

The Transmit FIFO block contains memory for 64 32-bit data words. The Transmit FIFO separates the transmit system interface timing from the transmit physical interface timing. The Transmit FIFO functions include filling the memory, tracking the memory fill level, maintaining the memory read and write pointers, and detecting memory overflow and underflow conditions. The number of data transfers that can occur after the Transmit FIFO "full" indication is deasserted is programmable. The Transmit FIFO port address used for selection and polling by the Transmit System Interface Bus Controller is programmable. In system loopback, the data from the Transmit FIFO is looped back to the Receive FIFO, and a FIFO empty indication is passed on to the Transmit Cell/Packet Processor.

In cell processing mode, all operations are cell based. The Transmit FIFO is considered empty when it does not contain any data. The Transmit FIFO is considered "almost empty" when it does not contain a cell. The Transmit FIFO is considered "almost full" when it does not have space available to store a programmable number of cells. The Transmit FIFO is considered full when it does not have space available for a complete cell. When the Transmit FIFO level drops below the "almost full" indication, the TDXA[n] is asserted. The Transmit FIFO accepts cell transfers from the Transmit System Interface Bus Controller until it is full. If a start of cell is received while full, the cell is discarded and a FIFO overflow condition is declared. Once a FIFO overflow condition is declared, the Transmit FIFO will discard cell data until a start of cell is received while the FIFO has more space available than the "almost full" level. If the Transmit FIFO receives cell data other than a start of cell after a complete cell has been received, an invalid transfer is declared and all cell data is discarded until a start of cell is received. If a start of cell is received before a previous cell transfer has been completed, the current cell is discarded and a short transfer is declared. The new cell is processed normally. If the Transmit Cell Processor attempts a read while the Transmit FIFO is empty, a FIFO underflow condition is declared. Once a FIFO underflow condition is declared, the Transmit FIFO data will be discarded until a start of cell is received.

In packet processing mode, all operations are byte based. The Transmit FIFO is considered empty when its memory does not contain any data. The Transmit FIFO is considered "almost empty" when its memory does not contain a packet end and there is a programmable number of bytes or less stored in the memory. The Transmit FIFO is considered "almost full" when its memory has a programmable number of bytes or less available for storage. When the Transmit FIFO has more bytes available for storage than the "almost full" level the TDXA[n] or TPXA pin will be asserted to signal to the POS device that it is ready to receive more packet data. The Transmit FIFO is considered full when it does not have any space available for storage. When the Transmit FIFO is full, the TDXA[n] pin will be deasserted. The Transmit FIFO accepts data from the Transmit System Interface Bus Controller until full. If a start of packet or short packet (32-bit data word with a start of packet and end of packet) is received while full, the data is discarded and a FIFO overflow condition is declared. If any other packet data is

received while full, the current packet being transferred is marked with an abort indication, and a FIFO overflow condition is declared. Once a FIFO overflow condition is declared, the Transmit FIFO will discard data until a start of packet is received while the FIFO has more space available than the "almost full" level. If a packet error (a transfer with TERR and TEOP asserted) is received from the Transmit System Interface Bus Controller, an aborted transfer is declared, the data is stored in memory with a packet abort indication, and the Transmit FIFO will discard data until a start of packet is received. If an end of a packet has been received and the Transmit FIFO receives packet data other than a start of packet, an invalid transfer is declared, and all packet data is discarded until a start of packet is received. If a start of packet is received before a previous packet transfer has been completed (an end of packet was never received), the current packet being transferred is marked with an abort indication and a short transfer is declared. The new packet is processed normally. If the Transmit Packet Processor attempts a read while the Transmit FIFO is empty, a FIFO underflow condition is declared. Once a FIFO underflow condition is declared, the Transmit FIFO data will be discarded until a start of cell is received.

8.3.7.2 Receive FIFO

The Receive FIFO block contains memory for 64 32-bit data words. The Receive FIFO separates the receive system interface timing from the receive physical interface timing. The Receive FIFO functions include filling the memory, tracking the memory fill level, maintaining the memory read and write pointers, and detecting memory overflow and underflow conditions. The Receive FIFO port address used for selection and polling by the Receive System Interface Bus Controller is programmable. In system loopback, data is looped back from the Transmit FIFO to the Receive FIFO.

In cell processing mode, all operations are cell based. The Receive FIFO is considered empty unless it contains a cell. The Receive FIFO is considered "almost empty" when it contains a programmable number of cells or less. When the Receive FIFO level has more data available for transfer than the "almost empty" level, the RDXA[n] pin is asserted. The Receive FIFO is considered "almost full" when it does not have space available to store a complete cell. The Receive FIFO is considered full when it does not have any space available. The Receive FIFO accepts cell data from the Receive Cell Processor until full. If cell data is received while the FIFO is full, the cell is discarded and a FIFO overflow condition is declared. Once a FIFO overflow condition is declared, the Receive FIFO will discard cell data until a cell start is received while the FIFO has space available to store a complete cell. If the Receive System Interface Bus Controller attempts a read while the FIFO is empty, the read is ignored.

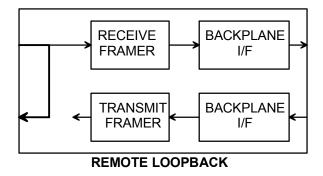
In packet processing mode, all operations are 32-bit word based. The Receive FIFO is considered empty when it does not contain any data. The Receive FIFO is considered "almost empty" when its memory does not contain a packet end and there is a programmable number of words or less stored in the memory. When the Receive FIFO has more bytes available for transfer than the "almost empty" level or has an end of packet, the RDXA[n] pin is asserted (POS-PHY Level 2). The Receive FIFO is considered "almost full" when its memory has a programmable number of words or less available for storage. The Receive FIFO is considered full when it does not have any space available for storage. The Receive FIFO accepts data from the Receive Packet Processor until full. If a packet start or short packet is received while full, the data is discarded and a FIFO overflow condition is declared. If any other packet data (packet end or middle) is received while full, the current packet being received is marked with an abort indication, and a memory overflow condition is declared. Once a memory overflow condition is declared, the Receive FIFO will discard data until a packet start is received while the FIFO has more space available than the "almost full" level. If the Receive System Interface Bus Controller attempts a read while the FIFO is empty, the read is ignored.

8.3.8 System Loopback

There is a system loopback available in the ATM/HDLC Mapper. The loopback can be performed on a per-port basis. When a port is placed in system loopback, the data coming in from the System Interface is looped back from the Transmit FIFO to the Receive FIFO, a FIFO empty indication is passed on to the Transmit Cell/Packet Processor, and all data coming from the Receive Cell/Packet Processor is discarded. The maximum throughput of a single port is limited to half of the Receive System Interface bandwidth in 16-bit mode. A loss of data may occur if the Cell Packet Receive clock (RSCLK) has a frequency that is greater than one and one half times the Cell Packet Transmit clock (TSCLK).

8.4 T1 Receive Framer Description and Operation

The DS26556 includes four fully independent DS1/E1 framers. Each framer can be individually programmed to accept AMI, B8ZS, HDB3, or NRZ data. In T1 mode, each framer supports D4 (SF), ESF, and SLC-96 frame formats, and detects/reports common alarms such as AIS, RAI, LOS, and OOF, as well as AIS-CI and RAI-CI. Performance monitor counters are maintained for each port, which report bipolar/line-code violations, F-bit/CRC errors, and number of out-of-sync multiframes.


Each framer has an HDLC controller that can be mapped into a single time slot, or Sa4 to Sa8 bits (E1 mode), or the FDL (T1 mode), and has 64-byte FIFO buffers in both the transmit and receive paths.

The HDLC controllers perform the necessary overhead for generating and receiving performance report messages (PRM) as described in ANSI T1.403 and the messages as described in AT&T TR54016. The HDLC controllers automatically generate and detect flags; generate and check the CRC checksum; generate and detect abort sequences and stuff and destuff zeros; and byte align to the data stream. The FIFO buffers are large enough to allow a full PRM to be received or transmitted without host intervention.

Other features contained within each framer include a BOC detector with programmable code integration and three independent 16-bit loop-code detectors. Host interface is simplified with status registers optimized for either interrupt driven or polled environments. In many cases, status bits are reported in both real-time and latched on change-of-state with separate bits for each state change. Most latched bits can be mapped to generate an external interrupt on the INT pin.

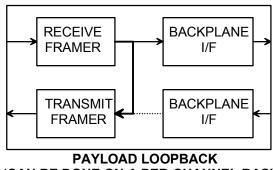

8.4.1 **T1 Loopbacks**

Figure 8-9 Remote Loopback

In this loopback, data input at the RTIP and RRING pins is transmitted back to the TTIP and TRING pins. Data continues to pass through the DS26556's receive-side framer as it would normally, and the data from the transmit-side formatter is ignored.

Figure 8-10 Payload Loopback


(CAN BE DONE ON A PER-CHANNEL BASIS)

When PLB is enabled, the following occurs:

- 1) Data is transmitted from the TTIP and TRING pins synchronous with RCLK instead of TCLK.
- 2) All the receive-side signals continue to operate normally.
- 3) TCHMKR is forced low.
- 4) Data at the TDATAI pin is ignored.

Normally, this loopback is only enabled when ESF framing is being performed, but it can also be enabled in D4 framing applications. In a PLB situation, the DS26556 loops the 192 bits of payload data (with BPVs corrected) from the receive section back to the transmit section. The FPS framing pattern, CRC6 calculation, and the FDL bits are not looped back, they are reinserted by the DS26556.

Figure 8-11 Framer Loopback

This loopback is useful in testing and debugging applications. In FLB, the DS26556 loops data from the transmit side back to the receive side. When FLB is enabled, the following occurs:

- 1) (T1 mode) An unframed all-ones code is transmitted at TTIP and TRING. (E1 mode) Normal data is transmitted at TTIP and TRING.
- 2) Data at RTIP and RRING is ignored.
- 3) All receive-side signals take on timing synchronous with TCLK instead of RCLK.

8.4.2 H.100 (CT Bus) Compatibility

The H.100 (or CT Bus) is a synchronous, bit-serial, TDM transport bus operating at 8.192MHz. The H.100 standard also allows compatibility modes to operate at 2.048MHz, 4.096MHz, or 8.192MHz. The control bit, H100EN (RIOCR.5), when combined with HSSYNCINV, allows the DS26556 to accept a CT-Bus-compatible frame-sync signal (CT FRAME) at the HSSYNC input. The following rules apply to the H100EN control bit:

- 1) The H100EN bit controls the sampling point for the HSSYNC input signal only.
- 2) The H100EN bit does **not** invert the expected signal; HSSYNCINV (TIOCR) must be set high to invert the inbound sync signal.

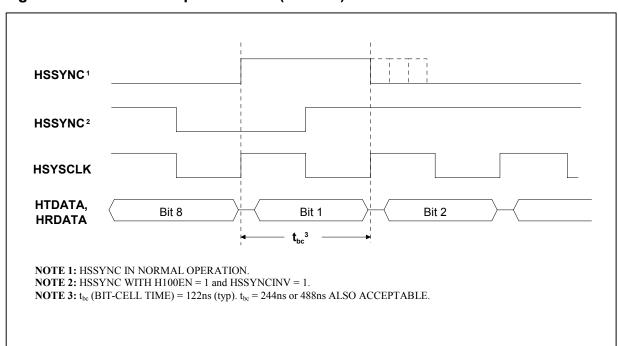


Figure 8-12 HSSYNC Input in H.100 (CT Bus) Mode

8.4.3 T1 Receive Status and Information

When a particular event has occurred (or is occurring), the appropriate bit in one of these registers is set to 1. Status bits can operate in either a latched or real-time fashion. Some latched bits can be enabled to generate a hardware interrupt through the $\overline{\text{INT}}$ signal.

Real-Time Bits

Some status bits operate in a real-time fashion. These bits are read-only and indicate the present state of an alarm or a condition. Real-time bits remain stable and valid during the host read operation. The current value of the internal status signals can be read at any time from the real-time status registers without changing any of the latched status register bits.

Latched Bits

When an event or an alarm occurs and a latched bit is set to 1, it remains set until the user clears it. These bits typically respond on a change-of-state for an alarm, condition, or event, and operate in a read-then-write fashion. The user should read the value of the desired status bit and then write a 1 to that particular bit location to clear the latched value (write a zero to locations not to be cleared). Once the bit is cleared, it is not set again until the event has occurred again.

Mask Bits

Some of the alarms and events can be either masked or unmasked from the interrupt pin through the interrupt mask registers (RIMx). When unmasked, the $\overline{\text{INT}}$ signal is forced low when the enabled event or condition occurs. The $\overline{\text{INT}}$ pin is allowed to return high (if no other unmasked interrupts are present) when the user reads, then clears (with a write) the alarm bit that caused the interrupt to occur. Note that the latched status bit and the $\overline{\text{INT}}$ pin clear even if the alarm is still present.

Note that some conditions can have multiple status indications. For example, receive loss-of-frame (RLOF) provides the following indications:

RRTS1.0 (RLOF)	Real-time indication that the receiver is not synchronized with incoming data stream. Read-only bit that remains high as long as the condition is present.
RLS1.0 (RLOFD)	Latched indication that the receiver has lost synchronization since the bit was last cleared. Bit will clear when written by the user, even if the condition is still present (rising edge detect of RRTS1.0).
RLS1.4 (RLOFC)	Latched indication that the receiver has reacquired synchronization since the bit was last cleared. Bit will clear when written by the user, even if the condition is still present (falling edge detect of RRTS1.0).

Table 8-1 T1 Alarm Criteria

ALARM	SET CRITERIA	CLEAR CRITERIA
AIS (Blue Alarm) (Note 1)	When over a 3ms window, 5 or fewer zeros are received	When over a 3ms window, 6 or more zeros are received
RAI (Yellow Alarm) 1) D4 Bit 2 Mode (RCR2.0 = 0)	When bit 2 of 256 consecutive channels is set to zero for at least 254 occurrences	When bit 2 of 256 consecutive channels is set to zero for less than 254 occurrences
2) D4 12th F-Bit Mode (RCR2.0 = 1; also referred to as the Japanese Yellow Alarm)	When the 12th framing bit is set to one for two consecutive occurrences	When the 12th framing bit is set to zero for two consecutive occurrences
3) ESF Mode	When 16 consecutive patterns of 00FF appear in the FDL	When 14 or less patterns of 00FF hex out of 16 possible appear in the FDL
LOS (also referred to as Receive Carrier Loss (RCL))	When 192 consecutive zeros are received	When 14 or more ones out of 112 possible bit positions are received starting with the first one received

Note 1: The definition of the Alarm Indication Signal (Blue Alarm) is an unframed all-ones signal. AIS detectors should be able to operate properly in the presence of a 10E-3 error rate, and they should not falsely trigger on a framed all-ones signal. The AIS alarm criteria in the DS26556 has been set to achieve this performance. It is recommended that the RAIS bit be qualified with the RLOF bit.

Note 2: The following terms are equivalent:

RAIS = Blue Alarm RLOS = RCL

RLOF = Loss of Frame

RRAI = Yellow Alarm

8.4.4 Receive AIS-CI and RAI-CI Detection

AIS-CI is a repetitive pattern of 1.26 seconds. It consists of 1.11 seconds of an unframed all ones pattern and 0.15 seconds of all ones modified by the AIS-CI signature. The AIS-CI signature is a repetitive pattern 6176 bits in length in which, if the first bit is numbered bit 0, bits 3088, 3474 and 5790 are logical zeros and all other bits in the pattern are logical ones (T1.403). AIS-CI is an unframed pattern and therefore is defined for all T1 framing formats. The RAIS-CI bit is set when the AIS-CI pattern has been detected and RAIS (RRTS1.2) is set. RAIS-CI is a latched bit and should be cleared by the host when read. RAIS-CI will continue to set approximately every 1.2 seconds that the condition is present. The host will need to 'poll' the bit, in conjunction with the normal AIS indicators to determine when the condition has cleared.

RAI-CI is a repetitive pattern within the ESF data link with a period of 1.08 seconds. It consists of sequentially interleaving 0.99 seconds of "00000000 11111111" (right-to-left) with 90ms of "00111110 11111111". The RRAI-CI bit is set when a bit-oriented code of "00111110 11111111" is detected while RRAI (RRTS1.3) is set. The RRAI-CI detector uses the receive BOC filter bits (RBF0 & RBF1) located in RBOCC to determine the integration time for RAI-CI detection. Like RAIS-CI, the RRAI-CI bit is latched and should be cleared by the host when read. RRAI-CI will continue to set approximately every 1.1 seconds that the condition is present. The host will need to 'poll' the bit, in conjunction with the normal RAI indicators to determine when the condition has cleared. It may be useful to enable the 200ms ESF RAI integration time with the RAIIE control bit (RCR2.1) in networks that use RAI-CI.

8.4.5 T1 Receive-Side Digital Milliwatt Code Generation

Receive-side digital milliwatt code generation involves using the receive-digital milliwatt registers (T1RDMR1/2/3) to determine which of the 24 T1 channels of the T1 line going to the backplane should be overwritten with a digital milliwatt pattern. The digital milliwatt code is an 8-byte repeating pattern that represents a 1kHz sine wave (1E/0B/0B/1E/9E/8B/8B/9E). Each bit in the T1RDMRx registers, represents a particular channel. If a bit is set to 1, then the receive data in that channel is replaced with the digital milliwatt code. If a bit is set to zero, no replacement occurs.

8.4.6 T1 Error Count Registers

The DS26556 contains three T1 performance counters that are used to accumulate line coding errors, path errors, and synchronization errors. Counter update options include one-second boundaries, 42ms (T1 mode only), 62.5ms (E1 mode only), or manually. See the *Error Counter Configuration Register* (ERCNT) section. When updated automatically, the user can use the interrupt from the timer to determine when to read these registers. The line-code violation count register has the potential to saturate, but the bit error would have to exceed 10E-2 before this would occur. All other counters roll over.

Several options are available for latching the performance counters:

- 1) Each framer's counters are latched independently based on independent one-second interval timers.
- 2) Each framer's counters are latched independently based on independent 42ms interval timers.
- 3) Each framer's counters are latched independently with a low-to-high transition on the respective MECU control bit.
- 4) Counters from selected framers are latched synchronously at the one-second interval supplied by Framer #1.
- 5) Counters from selected framers are synchronously latched manually with the global counter latch-enable (GCLE) bit in GCR1.

The following table shows control bit settings in the ERCNT register to support each of the five modes discussed above.

Control Bit	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5
EAMS	0	0	1	0	1
ECUS	0	1	Х	0	0
MECU	0	0	0 to 1	0	0
MCUS	0	0	0	0	1
1SECS	0	0	0	1	0

8.4.7 T1 Receive Signaling Operation

There are two methods of accessing receive-signaling data: through processor-based (i.e., software-based) signaling or hardware-based signaling. Processor-based refers to access through the receive-signaling registers, RS1 through RS12. Hardware-based refers to the HRSIG pin. Hardware based signaling is available only when the port is configured in the multiplexed bus mode utilizing the high speed TDM port. Both methods can be used simultaneously. NOTE: The receive framer does not normally remove robbed-bit signaling from the data stream. Signaling information is present in the data stream at the RSER pin unless the receive framer has been programmed to over-lay certain channels with idle codes or to force signaling bit positions to a "one" state. The signaling data in data stream at the HRDATA pin can be re-aligned to a users multiframe reference. See Signaling Re-insertion below.

8.4.8 Software Signaling

Robbed-bit signaling (the LSB of each channel during frames 6, 12, 18 and 24 in ESF mode and frames 6 and 12 in D4 mode) is sampled in the receive data stream and copied into the receive-signaling registers, RS1 through RS12. The signaling information in these registers is always updated on multiframe boundaries. This function is referred to as "Software Based Signaling" and is always enabled. The signaling bit position of each channels is sampled even thought the channel may not be carrying signaling information. The user may simply ignore these channels.

8.4.8.1 Change of State

To avoid constant monitoring of the receive-signaling registers, the DS26556 can be programmed to alert the host when any specific channel or channels undergo a change of their signaling state. For T1, RSCSE1 through RSCSE3 are used to select which channels can cause a change-of-state indication. The change of state is indicated in latched status register 4 (RLS4.3). The user can enable the $\overline{\text{INT}}$ pin to toggle low upon detection of a change in signaling by setting the interrupt mask bit RIM4.3.

The user can identify which channels have undergone a signaling change of state by reading the receive-signaling status (RSS1–RSS3) registers. The information from these registers tells the user which RSx register to read for the new signaling data. All changes are indicated in the RSS1 through RSS3 registers regardless of the state of the RSCSE1 through RSCSE3 registers.

8.4.9 Hardware Signaling

A TDM signaling stream is available via the HRSIG pin when the port is configured to use the high speed multiplexed TDM bus. HRSIG is a signaling-PCM stream output on a channel-by-channel basis from the signaling buffer and multiplexed with any other port configured to use the high speed TDM bus. In ESF mode the HRSIG data is updated once a multiframe (3ms) unless a freeze is in effect. In the D4 framing mode, the AB signaling bits are output twice on RSIG in the lower nibble of each channel. Hence, bits 5 and 6 contain the same data as bits 7 and 8, respectively, in each channel. The HRSIG data is updated once a multiframe (1.5ms) unless a freeze is in effect.

8.4.9.1 Signaling Debounce

When signaling integration is enabled (RSIGC.0 = 1), the signaling data at the HRSIG pin is automatically debounced. Signaling must be constant for three multiframes before being updated at HRSIG. Signaling debounce is enabled on a global basis (all channels or none). **NOTE: This feature is available only on the high speed TDM bus.**

8.4.10 Signaling Re-insertion

The signaling buffer allows signaling data to be reinserted into the original data stream in a different alignment determined by a multiframe sync signal from the HSSYNC pin. Registers RSI1 through RSI4 are used to select signaling re-insertion on a channel-by-channel basis. Ports configured to be multiplexed on the high speed TDM bus can have the same signaling alignment. In T1 mode re-insertion generally results in there being two copies of robbed signaling for each port in the data stream, one at the original position and one at the user defined position. NOTE: It is possible to configure only one port to the high speed multiplexed bus. In this case the RSER pin for that port and the HRDATA pin are duplicates.

8.4.11 Receive Signaling Freeze

NOTE: This feature is available only on the high speed TDM bus. The signaling data in the four multiframe signaling buffer will be frozen in a known good state upon either a loss of framing (RLOF), carrier loss (RLOS), or change of frame alignment (COFA). To allow this freeze action to occur, the RSFE control bit (RSIGC.1) should be set high. The user can force a freeze by setting the RSFF control bit (RSIGC.2) high. The four multiframe buffer provides a three multiframe delay in the signaling bits provided at the HRSIG pin (and at the HRDATA pin if receive signaling reinsertion is enabled). When freezing is enabled (RSFE = 1), the signaling data will be held in the last known good state until the error condition subsides. The signaling data will be held in the old state for at least an additional 6ms before being allowed to update with new signaling data.

8.4.12 Fractional T1 Support (Gapped-Clock Mode)

The DS26556 can be programmed to output gapped clocks for selected channels in the receive and transmit paths. When the gapped-clock feature is enabled, a gated clock is output on the RCHMRK pin. The channel selection is controlled through the receive-gapped-clock channel-select registers (RGCCS1–RGCCS4). The receive path is enabled for gapped-clock mode with the RGCE bit (RESCR.6). Both 56kbps and 64kbps channel formats are supported as determined by RESCR.7. When 56kbps mode is selected, the clock corresponding to the data/control bit in the channel is omitted (only the seven most significant bits of the channel have clocks).

8.4.13 T1 Bit-Oriented Code (BOC) Controller

The DS26556 contains a BOC generator on the transmit side and a BOC detector on the receive side. The BOC function is available only in T1 mode.

In ESF mode, the DS26556 continuously monitors the receive message bits for a valid BOC message. The BOC-detect (BD) status bit at RLS7.0 is set once a valid message has been detected for time determined by the receive-BOC-filter bits RBF0 and RBF1 in the RBOCC register. The 6-bit BOC message is available in the RBOC register. Once the user has cleared the BD bit, it remains clear until a new BOC is detected (or the same BOC is detected following a BOC-clear event). The BOC-clear (BC) bit at RLS7.1 is set when a valid BOC is no longer being detected for a time determined by the receive-BOC-disintegration bits RBD0 and RBD1 in the RBOCC register.

The BD and BC status bits can create a hardware interrupt on the $\overline{\text{INT}}$ signal as enabled by the associated interrupt mask bits in the RIM7 register.

8.4.14 Receive SLC-96 Operation

In an SLC-96-based transmission scheme, the standard Fs-bit pattern is robbed to make room for a set of message fields. The SLC-96 multiframe is made up of six D4 superframes, hence it is 72 frames long. In the 72-frame SLC-96 multiframe, 36 of the framing bits are the normal Ft pattern and the other 36 bits are divided into alarm, maintenance, spoiler, and concentrator bits, as well as 12 bits of the normal Fs pattern. Additional SLC-96 information can be found in BellCore document TR-TSY-000008.

To enable the DS26556 to synchronize onto an SLC-96 pattern, the following configuration should be used:

- Set to D4 framing mode (RCR1.5 = 1)
- Set to cross-couple Ft and Fs bits (RCR1.3 = 1)
- Enable SLC-96 synchronizer (RCR2.4 = 1)
- Set to minimum sync time (RCR1.7 = 0)

The status bit RSLC96 located at RLS7.3 is useful for retrieving SLC-96 message data. The RSLC96 bit indicates when the framer has received the 12-bit Fs-alignment pattern and updated the data-link registers RSLC1–RSLC3 with the latest message data from the incoming data stream. Once the RSLC96 bit is set, the user has 2ms to retrieve the most recent message data from the RSLC1/2/3 registers. Note that RSLC96 is not set if the DS26556 is unable to detect the 12-bit SLC-96 alignment pattern.

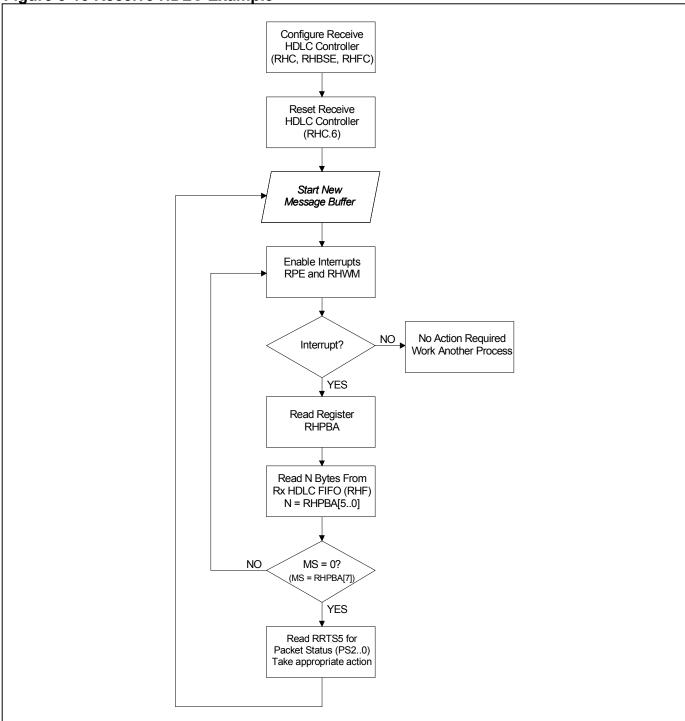
8.4.15 Receive FDL

In the receive section, the recovered FDL bits or Fs bits are shifted bit-by-bit into the receive FDL register (RFDL). Since the RFDL is 8 bits in length, it fills up every 2ms (8 x 250 μ s). The framer signals an external microcontroller that the buffer has filled through the RLS7.2 bit. If enabled through RIM7.2, the $\overline{\text{INT}}$ pin toggles low, indicating that the buffer has filled and needs to be read. The user has 2ms to read this data before it is lost. Note that no zero destuffing is applied for the data provided through the RFDL register.

8.4.16 Programmable In-Band Loop-Code Detection

The DS26556 can generate and detect a repeating bit pattern from 1 to 8 bits or 16 bits in length. This function is available only in T1 mode. The framer has three programmable pattern detectors. Typically, two of the detectors are used for loop-up and loop-down code detection. The user programs the codes to be detected in the receive-upcode definition (RUPCD1 and RUPCD2) registers and the receive-down-code definition (RDNCD1 and RDNCD2) registers, and the length of each pattern is selected through the RIBCC register. A third detector (spare) is defined and controlled through the RSPCD1/RSPCD2 and RSCC registers. When detecting a 16-bit pattern, both receivecode-definition registers are used together to form a 16-bit register. For 8-bit patterns, both receive-code-definition registers are filled with the same value. Detection of a 1-, 2-, 3-, 4-, 5-, 6-, and 7-bit pattern only requires the first receive-code-definition register to be filled. The framer detects repeating pattern codes in framed and unframed circumstances with bit-error rates as high as 10E-2. The detectors can handle F-bit-inserted and F-bit-overwrite patterns. Writing the least significant byte of the receive-code-definition register resets the integration period for that detector. The code detector has a nominal integration period of 36ms. Therefore, after about 36ms of receiving a valid code, the proper status bit (LUP, LDN, and LSP) is set to 1. Note that real-time status bits, as well as latched set and clear bits, are available for LUP, LDN, and LSP (RRTS3 and RLS3). Normally codes are sent for 5 seconds. It is recommended that the software poll the framer every 50ms to 1000ms until 5 seconds has elapsed to ensure the code is continuously present.

8.4.17 Receive HDLC Controller


The HDLC controller can be mapped into a single time slot, or Sa4 to Sa8 bits (E1 mode), or the FDL (T1 mode). The HDLC controller has a 64-byte FIFO buffer in the transmit and receive paths. The user can select any specific bits within the time slot(s) to assign to the HDLC controller, as well as specific Sa bits (E1 mode).

The HDLC controller performs the necessary overhead for generating and receiving performance report messages (PRM) as described in ANSI T1.403 and the messages as described in AT&T TR54016. The HDLC controller automatically generates and detects flags; generates and checks the CRC checksum; generates and detects abort sequences and stuffs and destuffs zeros; and byte aligns to the data stream. The 64-byte buffers in the HDLC controller are large enough to allow a full PRM to be received or transmitted without host intervention.

8.4.18 Receive HDLC Controller Example

The HDLC status registers in the DS26556 allow for flexible software interface to meet the user's preferences. When receiving HDLC messages, the host can choose to be interrupt-driven, or to poll to desired status registers, or a combination of polling and interrupt processes can be used. shows an example routine for using the DS26556 HDLC receiver.

8.5 T1 Transmit Formatter Description and Operation

Four fully independent DS1/E1 transmit formatters are included within the DS26556. Each port can be individually programmed to transmit AMI, B8ZS, HDB3, or NRZ data. In T1 mode each formatter supports D4 (SF), ESF, and SLC-96 frame formats, and transmits common alarms such as AIS, RAI, AIS-CI, and RAI-CI.

Each framer also has an HDLC controller which can be mapped into a single time slot, or Sa4 to Sa8 bits (E1 Mode) or the FDL (T1 Mode) and has 64 byte FIFO buffers in both the transmit and receive paths. The user can select any specific bits within the time slot(s) to assign to the HDLC controllers, as well as specific Sa bits (E1 Mode).

The HDLC controllers perform all the necessary overhead for generating and receiving Performance Report Messages (PRM) as described in ANSI T1.403 and the messages as described in AT&T TR54016. The controllers automatically generate and detects flags, generate and check the CRC check sum, generate and detect abort sequences, stuff and de-stuff zeros, and byte align to the data stream. The large FIFO buffers allow a full PRM to be received or transmitted without host intervention.

Other features contained within each framer include a BOC generator and a 16-bit loop code generator. Host interface is simplified with status registers optimized for either interrupt driven or polled environments. In many cases, status bits are reported both real-time and latched on change-of-state with separate bits for each state change. Most latched bits can be enabled to generate an external interrupt on the $\overline{\text{INT}}$ pin.

Additional details concerning the operation of the DS1 formatter are included within the register descriptions within this section.

8.5.1 T1 Per-Channel Loopback

The Per-Channel Loopback Registers (PCLRs) determine which channels (if any) from the backplane should be replaced with the data from the receive side or in other words, off of the T1 or E1 line. If this loopback is enabled, then transmit and receive clocks and frame syncs must be synchronized. One method to accomplish this would be to tie RCLK to TCLK and RFSYNC to TSYNC. There are no restrictions on which channels can be looped back or on how many channels can be looped back.

8.5.2 T1 Transmit DS0 Monitoring Function

The DS26556 has the ability to monitor one DS0 (64kbps) channel in the transmit direction and one DS0 channel in the receive direction at the same time. In the transmit direction the user will determine which channel is to be monitored by properly setting the TCM0 to TCM4 bits in the TDS0SEL register. In the receive direction, the RCM0 to RCM4 bits in the RDS0SEL register need to be properly set. The DS0 channel pointed to by the TCM0 to TCM4 bits will appear in the Transmit DS0 Monitor (TDS0M) register and the DS0 channel pointed to by the RCM0 to RCM4 bits will appear in the Receive DS0 (RDS0M) register. The TCM4 to TCM0 and RCM4 to RCM0 bits should be programmed with the decimal decode of the appropriate T1or E1 channel. T1 channels 1 through 24 map to register values 0 through 23. E1 channels 1 through 32 map to register values 0 through 31. For example, if DS0 channel 6 in the transmit direction and DS0 channel 15 in the receive direction needed to be monitored, then the following values would be programmed into TDS0SEL and RDS0SEL:

TCM[4:0] = 00101 RCM[4:0] = 01110

8.5.3 T1 Transmit Signaling Operation

There are two methods of providing transmit signaling data—processor-based (i.e., software-based) or hardware-based. Processor-based refers to access through the transmit signaling registers, TS1 through TS12, while hardware-based refers to using the HTSIG pins. Hardware based signaling is available only when the port is configured in the multiplexed bus mode utilizing the high speed TDM port. Both methods can be used simultaneously. Note: Signaling data may already be imbedded in the transmit data streams at the TSER or HTDATA pins. In this case the two methods mentioned above may be used to update any or all channels.

8.5.3.1 Software Signaling

Signaling data is loaded into the Transmit Signaling registers (TS1–TS12) via the host interface. On multiframe boundaries, the contents of these registers are loaded into a shift register for placement in the appropriate bit position in the outgoing data stream. The user can utilize the Transmit Multiframe Interrupt in Latched Status

Register 1 (TLS1.2) to know when to update the signaling bits. The user need not update any transmit signaling register for which there is no change of state for that register.

Each Transmit Signaling Register contains the robbed bit signaling for two time slots that will be inserted into the outgoing stream if enabled to do so via TCR1.6. Signaling data can be sourced from the TSx registers on a perchannel basis by utilizing the Software Signaling Insertion Enable registers, SSIE1 through SSIE3.

In T1 ESF framing mode, there are four signaling bits per channel (A, B, C, and D). TS1 through TS12 contain a full multiframe of signaling data. In T1 D4 framing mode, there are only two signaling bits per channel (A and B). In T1 D4 framing mode, the framer uses A and B bit positions for the next multiframe. The C and D bit positions become 'don't care' in D4 mode.

8.5.3.2 Hardware Signaling

Hardware signaling is only available when the port is configured to use the high speed TDM bus. **Note: the cell/packet interface is unavailable to this port in this mode.** In hardware mode, signaling data is input via the HTSIG pin. This signaling PCM stream is demultiplexed, buffered and inserted to the data stream input from the demultiplexed HTDATA pin.

The user has the ability to control which channels are to have signaling data from the HTSIG pin inserted into them on a per-channel basis via the THSCS1 through THSCS3 registers.

8.5.4 T1 Transmit Per-Channel Idle Code Insertion

Channel data can be replaced by an idle code on a per-channel basis in the transmit and receive directions. Twenty-four Transmit Idle Definition Registers (TIDR1-TIDR24) are provided to set the 8-bit idle code for each channel. The Transmit Channel Idle Code Enable registers (TCICE1-3) are used to enable idle code replacement on a per channel basis.

8.5.5 T1 Transmit Channel Mark Registers

The Transmit Channel Mark Registers (TCMR1/TCMR2/TCMR3/TCMR4) control the mapping of channels to the transmit cell/packet interface and the TCHMRK pin. The TCHMRK signal is used internally to select which channels will be mapped to the transmit cell/packet interface. Externally, the signal can be used to multiplex TDM data into channels not used by the transmit cell/packet interface. When the appropriate bits are set to 1, the transmit cell/packet function is mapped to that channel and externally the TCHMRK pin is held high during the entire corresponding channel time. In T1 mode, only RCMR1 to RCMR3 and the LSB of RCMR4 are used.

8.5.6 Fractional T1 Support (Gapped Clock Mode)

The DS26556 can be programmed to output gapped clocks for selected channels in transmit path. When the TCHMRK pin is in the channel clock mode and gapped channel clock is enabled, a gated clock is output on the TCHMRK pin during selected channel times. The channel selection is controlled via the transmit-gapped-clock channel-select registers (TGCCS1-TGCCS4). If TCHMRK is in the channel clock mode, clock mode is enabled by the TGCLKEN bit (TESCR.6). Both 56kbps and 64kbps channel formats are supported as determined by TESCR.7. When 56kbps mode is selected, the clock corresponding to the Data/Control bit in the channel is omitted (only the seven most significant bits of the channel have clocks).

8.5.7 T1 Transmit Bit Oriented Code (BOC) Controller

The DS26556 contains a BOC generator on the transmit side and a BOC detector on the receive side. The BOC function is available only in T1 mode.

Bits 0 through 5 in the TBOC register contain the BOC message to be transmitted. Setting SBOC = 1 (THC2.6) causes the transmit BOC controller to immediately begin inserting the BOC sequence into the FDL bit position. The transmit BOC controller automatically provides the abort sequence. BOC messages will be transmitted as long as SBOC is set. Note that the TFPT (TCR1.6) control bit must be set to 'zero' for the BOC message to overwrite F-bit information being sampled on TSER.

8.5.8 T1 Transmit FDL

When enabled with TCR2.7, the transmit section will shift out into the T1 data stream, either the FDL (in the ESF framing mode) or the Fs bits (in the D4 framing mode) contained in the Transmit FDL register (TFDL). When a new value is written to the TFDL, it will be multiplexed serially (LSB first) into the proper position in the outgoing T1 data

stream. After the full eight bits has been shifted out, the framer will signal the host microcontroller that the buffer is empty and that more data is needed by setting the TLS2.4 bit to a one. The $\overline{\text{INT}}$ will also toggle low if enabled via TIM2.4. The user has 2ms to update the TFDL with a new value. If the TFDL is not updated, the old value in the TFDL will be transmitted once again. Note that in this mode, no zero stuffing will be applied to the FDL data.

In the D4 framing mode, the framer uses the TFDL register to insert the Fs framing pattern. To allow the device to properly insert the Fs framing pattern, the TFDL register must be programmed to 1Ch and the following bits must be programmed as shown: TCR2.7 = 0 (source Fs data from the TFDL register) TCR2.6 = 1 (allow the TFDL register to load on multiframe boundaries).

8.5.9 Transmit SLC-96 Operation

In a SLC-96 based transmission scheme, the standard Fs bit pattern is robbed to make room for a set of message fields. The SLC-96 multiframe is made up of six D4 superframes, hence it is 72 frames long. In the 72-frame SLC-96 multiframe, 36 of the framing bits are the normal Ft pattern and the other 36 bits are divided into alarm, maintenance, spoiler, and concentrator bits as well as 12 bits of the normal Fs pattern. Additional SLC-96 information can be found in BellCore document TR-TSY-000008.

To insert the SLC-96 message fields, the user has the option to either use the external TLINK pin or the use the onboard TFDL register. Use of the TLINK pin will require additional circuitry, and to enable this option the TCR2.7 bit should be set to one. To insert the SLC-96 message using the TFDL register, the user should configure the DS26556 as shown below:

TCR2.6 (TSLC96) = 1 Enable Transmit SLC-96

TCR2.7 (TFDLS) = 0 Source FS bits via TFDL or SLC96 formatter

TCR3.2 (TFM) = 1 D4 framing Mode

TCR1.6 (TFPT) = 0 Do not 'pass through' TSER F-bits.

The DS26556 will automatically insert the 12-bit alignment pattern in the Fs bits for the SLC96 data link frame. Data from the TSLC1–TSLC3 will be inserted into the remaining Fs bit locations of the SLC96 multiframe. The status bit TSLC96 located at TLS1.4 will set to indicate that the SLC96 data link buffer has been transmitted and that the user should write new message data into TSLC1–TSLC3. The host will have 2.5ms after the assertion of TLS1.4 to write the registers TSLC1–TSLC3. If no new data is provided in these registers, the previous values will be retransmitted.

8.5.10 Transmit HDLC Controller

The HDLC controller can be mapped into a single time slot, or Sa4 to Sa8 bits (E1 Mode) or the FDL (T1 Mode). The HDLC controller has a 64-byte FIFO buffer in both the transmit and receive paths. The user can select any specific bits within the time slot(s) to assign to the HDLC controller, as well as specific Sa bits (E1 Mode).

The HDLC controller performs all the necessary overhead for generating and receiving Performance Report Messages (PRM) as described in ANSI T1.403 and the messages as described in AT&T TR54016. The HDLC controller automatically generates and detects flags, generates and checks the CRC check sum, generates and detects abort sequences, stuffs and de-stuffs zeros, and byte aligns to the data stream.

8.5.10.1 Transmit HDLC FIFO Control

Control of the transmit FIFO is accomplished via the Transmit HDLC FIFO Control (THFC). The FIFO Control register sets the watermarks for the receive FIFO.

When the transmit FIFO empties below the low watermark, the TLWM bit in the appropriate HDLC status register will be set. TLWM is a real-time bit and remains set as long as the transmit FIFO's write pointer is below the watermark. If enabled, this condition can also cause an interrupt via the $\overline{\text{INT}}$ pin.

8.5.11 HDLC Transmit Example

The HDLC status registers in the DS26556 allow for flexible software interface to meet the user's preferences. When transmitting HDLC messages, the host can chose to be interrupt driven, or to poll to desired status registers, or a combination of polling and interrupt processes may be used. An example routine for using the DS26556 HDLC transmitter is given in Figure 8-14 HDLC Message Transmit Example.

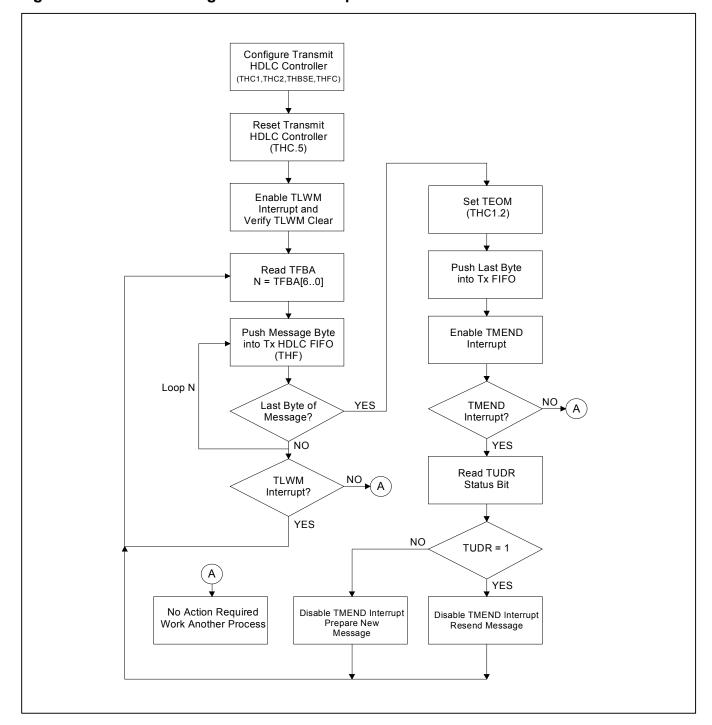


Figure 8-14 HDLC Message Transmit Example

8.5.12 Programmable In-Band Loop-Code Generator

The DS26556 can generate and detect a repeating bit pattern from one to eight bits or sixteen bits in length. This function is available only in T1 mode. To transmit a pattern, the user will load the pattern to be sent into the Transmit Code Definition registers (TCD1&TCD2) and select the proper length of the pattern by setting the TC0 and TC1 bits in Transmit Control Register 4 (TCR4). When generating a 1-, 2-, 4-, 8-, or 16-bit pattern both transmit code definition registers (TCD1&TCD2) must be filled with the proper code. Generation of a 3, 5, 6 and 7 bit pattern only requires TCD1 to be filled. Once this is accomplished, the pattern will be transmitted as long as the TLOOP control bit (TCR3.0) is enabled. Normally (unless the transmit formatter is programmed to not insert the F-bit position) the framer will overwrite the repeating pattern once every 193 bits to allow the F-bit position to be sent.

As an example, to transmit the standard "loop-up" code for Channel Service Units (CSUs), which is a repeating pattern of ...10000100001..., set TCD1 = 80h, TC0=0, TC1=0, and TCR3.0 = 1.

8.5.13 Interfacing the T1 Tx Formatter to the BERT

Data from the BERT can be inserted into the DS26556 transmit formatter data stream. Either framed or unframed format can be transmitted, controlled by the TBFUS bit in the TBICR. Any signal DS0, combination of DS0s, or the entire bandwidth can be replaced with the BERT data as controlled by the TBCS registers.

8.5.14 T1 Transmit Synchronizer

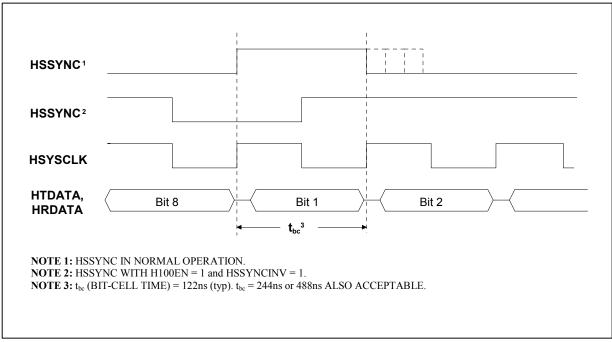
When enabled, the DS26556 transmitter has the ability to identify the D4 or ESF frame boundary within the incoming NRZ data stream at TSER. The TFM (TCR3.2) control bit determines whether the transmit synchronizer searches for the D4 or ESF multiframe. Additional control signals for the transmit synchronizer are located in the TSYNCC register. The Transmit Latched Status 3 (TLS3) register provides a latched status bit (LOFD) to indicate that a Loss-of-Frame synchronization has occurred, and a real-time bit (LOF) which is set high when the synchronizer is searching for frame/multiframe alignment. The LOFD bit can be enabled to cause an interrupt condition on $\overline{\text{INT}}$.

Note that when the transmit synchronizer is used, the TSYNC signal should be set as an output (TSIO = 1) and the recovered frame sync pulse will be output on this signal. The recovered multiframe sync pulse will be output if enabled with TIOCR.0 (TSM = 1).

8.6 E1 Receive Framer Description and Operation

Four fully independent DS1/E1 framers are included within the DS26556. Each framer can be individually programmed to accept AMI, HDB3 (E1), B8ZS (T1), or NRZ data. In E1 mode each framer supports FAS, CRC-4, and CAS frame formats, and detects/reports common alarms such as AIS, RAI, LOS, and LOF. Performance monitor counters are maintained for each port that reports bipolar/line code violations, CRC-4 errors, FAS errors, and E-bits.

Each framer has an HDLC controller which can be mapped into a single time slot, or Sa4 to Sa8 bits (E1 Mode) or the FDL (T1 Mode) and includes 64 byte FIFO buffers in both the transmit and receive paths.


Host interface is simplified with status registers optimized for either interrupt driven or polled environments. In many cases, status bits are reported both real-time and latched on change-of-state with separate bits for each state change. Most latched bits can be mapped to generate an external interrupt on the INT pin.

8.6.1 H.100 (CT Bus) Compatibility

The H.100 (or CT Bus) is a synchronous, bit-serial, TDM transport bus operating at 8.192MHz. The H.100 standard also allows compatibility modes to operate at 2.048MHz, 4.096MHz, or 8.192MHz. The control bit H100EN (RIOCR.5), when combined with HSSYNCINV allows the DS26556 to accept the CT-Bus compatible frame sync signal (/CT FRAME) at the HSSYNC input. The following rules apply to the H100EN control bit:

- 1) The H100EN bit controls the sampling point for the HSSYNC only.
- 2) The H100EN bit in RIOCR controls HSSYNC.
- 3) The H100EN bit does **not** invert the expected signal; HSSYNCINV (TIOCR) must be set 'high' to invert the inbound sync signals.

Figure 8-15 HSSYNC Input in H.100 (CT Bus) Mode

8.6.2 E1 Error Count Registers

The DS26556 contains four counters that are used to accumulate line coding errors, path errors, and synchronization errors. Counter update options include one-second boundaries, 42ms (T1 mode only), 62.5ms (E1 mode only), or manually. See Error Counter Configuration Register (ERCNT). When updated automatically, the user can use the interrupt from the timer to determine when to read these registers. All four counters will saturate at their respective maximum counts and they will not rollover. The Line-Code Violation Count Register has the potential to saturate, but the bit error would have to exceed 10E-2 before this would occur. All other counters will roll over.

Several options are available for latching the performance counters:

- 1) Each framer's counters are latched independently based on independent one-second interval timers.
- 2) Each framer's counters are latched independently based on independent 62.5ms interval timers.
- 3) Each framer's counters are latched independently with a low to high transition on the respective MECU control hit
- 4) Counters from selected framers are latched synchronously at the one-second interval supplied by framer #1.
- 5) Counters from selected framers are synchronously latched manually with the Global Counter Latch Enable (GCLE) bit in GCR1.

The following table shows configuration bit settings in the ERCNT register for each of the 5 modes mentioned above:

Control Bit	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5
EAMS	0	0	1	0	1
ECUS	0	1	X	0	0
MECU	0	0	0 to 1	0	0
MCUS	0	0	0	0	1
1SECS	0	0	0	1	0

8.6.2.1 E1 Line Code Violation Count Register (LCVCR)

Either bipolar violations or code violations can be counted. Bipolar violations are defined as consecutive marks of the same polarity. In this mode, if the HDB3 mode is set for the receive side; HDB3 codewords are not counted as BPVs. If ERCNT.0 is set, then the LVC counts code violations as defined in ITU O.161. Code violations are defined

as consecutive bipolar violations of the same polarity. In most applications, the framer should be programmed to count BPVs when receiving AMI code and to count CVs when receiving HDB3 code. This counter increments at all times and is not disabled by loss of sync conditions. The counter saturates at 65,535 and will not rollover. The bit error rate on an E1 line would have to be greater than 10** - 2 before the VCR would saturate. See Table 8-2.

Table 8-2 E1 Line Code Violation Counting Options

E1 CODE VIOLATION SELECT (ERCNT.0)	WHAT IS COUNTED IN THE LCVCRs
0	BPVs
1	CVs

8.6.3 DS0 Monitoring Function

The DS26556 has the ability to monitor one DS0 64kbps channel in the transmit direction and one DS0 channel in the receive direction at the same time. In the receive direction, the RCM0 to RCM4 bits in the RDS0SEL register need to be properly set and the DS0 channel pointed to by the RCM0 to RCM4 bits will appear in the Receive DS0 (RDS0M) register. The RCM0 to RCM4 bits should be programmed with the decimal decode of the appropriate E1 channel. E1 channels 1 through 32 map to register values 0 through 31. For example, if DS0 channel 15 in the receive direction needed to be monitored, then the following values would be programmed into RDS0SEL:

RCM4 = 0

RCM3 = 1

RCM2 = 1

RCM1 = 1

RCM0 = 0

8.6.4 E1 Receive Signaling Operation

Signaling data is sampled in the receive data stream and copied into the receive signaling registers, RS1 through RS16. The signaling information in these registers is always updated on multiframe boundaries. This function is always enabled. NOTE: The receive framer does not normally remove TS16 signaling from the data stream. Signaling information is present in the data stream at the RSER pin unless the receive framer has been programmed to over-lay TS16 with idle codes or to force signaling bit positions to a "one" state. The signaling data in data stream at the HRDATA pin can be re-aligned to a users multiframe reference. See Signaling Reinsertion below.

CAS signaling (time slot 16) is sampled in the receive data stream and copied into the receive-signaling registers, RS1 through RS16. The signaling information in these registers is always updated on CAS multiframe boundaries. This function is referred to as "Software Based Signaling" and is always enabled. Time slot 16 is always sampled and loaded into the signaling registers even though CAS signaling data may not be present.

When the high speed multiplexed TDM bus is utilized, a TDM signaling stream is available at the HRSIG pin. This is referred to as "Hardware Based Signaling".

8.6.4.1 Change Of State

In order to avoid constantly monitoring of the receive signaling registers the DS26556 can be programmed to alert the host when any specific channel or channels undergo a change of their signaling state. RSCSE1 through RSCSE4 for E1 are used to select which channels can cause a change of state indication. The change of state is indicated in Latched Status Register 4 (RLS4.3). If signaling integration is enabled then the new signaling state must be constant for 3 multiframes before a change of state indication is indicated. The user can enable the $\overline{\text{INT}}$ pin to toggle low upon detection of a change in signaling by setting the appropriate interrupt mask bit RIM4.3. The signaling integration mode is global and cannot be enabled on a channel-by-channel basis.

The user can identity which channels have undergone a signaling change of state by reading the Receive Signaling Status (RSS1 through RSS4) registers. The information from these registers tells the user which RSx register to read for the new signaling data. All changes are indicated in the RSS1–RSS4 registers regardless of the RSCSE1–RSCSE4 registers.

8.6.4.2 Hardware-Based Receive Signaling

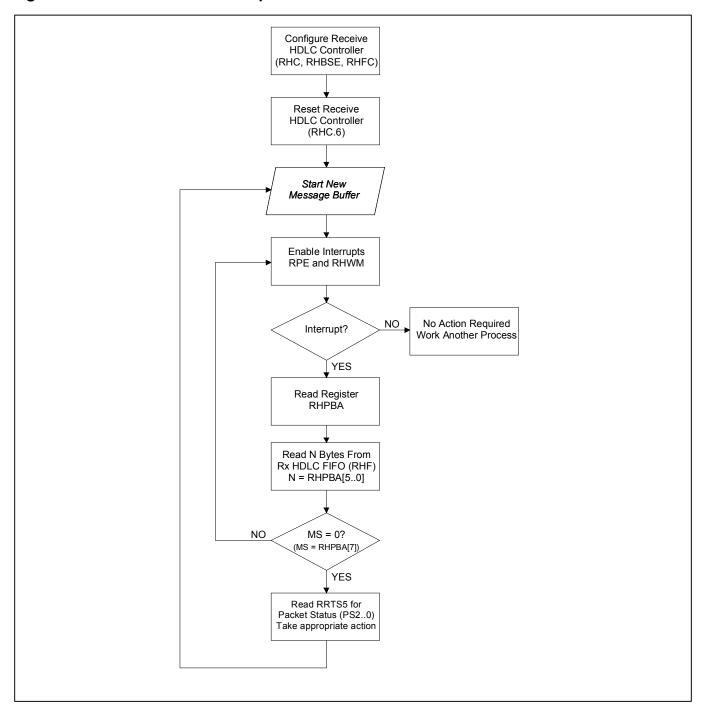
HRSIG is a signaling PCM stream output on a channel-by-channel basis from the signaling buffer. The ABCD signaling bits are output on HRSIG in the lower nibble of each channel. HRSIG is updated once per CAS multiframe (2ms) unless a freeze is in effect. TS16 signaling data is still present in the original data stream at RSER. A signaling buffer provides signaling data to the HRSIG pin and also allows signaling data to be re-inserted into the original data stream in a different alignment that is determined by a multiframe signal from the RSYNC pin.

When signaling integration is enabled the signaling data at RSIG is automatically debounced. Signaling must be constant for three multiframes before being up-dated at RSIG. Signaling debounce is enabled on a global basis.

8.6.5 Fractional E1 Support (Gapped Clock Mode)

The DS26556 can be programmed to output gapped clocks for selected channels in receive path. When the RCHMRK pin is in the channel clock mode and gapped channel clock is enabled, a gated clock is output on the RCHMRK pin during selected channel times. The channel selection is controlled via the receive-gapped-clock channel-select registers (RGCCS1-RGCCS4). If RCHMRK is in the channel clock mode, clock mode is enabled by the RGCLKEN bit (RESCR.6). Both 56kbps and 64kbps channel formats are supported as determined by RESCR.7. When 56kbps mode is selected, the clock corresponding to the Data/Control bit in the channel is omitted (only the seven most significant bits of the channel have clocks).

8.6.6 Additional Sa-Bit and Si-Bit Receive Operation (E1 Mode)


When operated in the E1 mode the DS26556 receiver provides extended access to both the Sa and the Si bits. The RAF and RNAF registers will always report the data as it received in the Sa and Si bit locations. The RAF and RNAF registers are updated on align frame boundaries. The setting of the Receive Align Frame bit in Latched Status Register 2 (RLS2.0) will indicate that the contents of the RAF and RNAF have been updated. The host can use the RLS2.0 bit to know when to read the RAF and RNAF registers. The host has $250\mu s$ to retrieve the data before it is lost.

Also there are eight registers (RsiAF, RSiNAF, RRA, Rsa4 to Rsa8) that report the Si and Sa bits as they are received. These registers are updated with the setting of the Receive CRC4 Multiframe bit in Latched Status Register 2 (RLS2.1). The host can use the RLS2.1 bit to know when to read these registers. The user has 2ms to retrieve the data before it is lost. See the register descriptions below for additional information.

8.6.7 HDLC Overhead Control Receive Example

The HDLC status registers in the receive framer allow for flexible software interface to meet the user's preferences. When receiving HDLC messages, the host can chose to be interrupt driven, or to poll to desired status registers, or a combination of polling and interrupt processes may be used. An example routine for using the DS26556 HDLC receiver is given in Figure 8-16.

Figure 8-16 Receive HDLC Example

8.6.8 Interfacing the E1 Rx Framer to the BERT

The Receive BERT receives data from the framer when the receive BERT is enabled. Any single DS0 or combination of DS0s can be extracted from the data stream up to the entire T1 payload as controlled by the RBCS registers.

Details concerning the on-chip BERT can be found in Section 13.

8.6.9 E1 Transmit Formatter Description and Operation

Four fully independent DS1/E1 transmit formatters are included within the DS26556. Each port can be individually programmed to transmit AMI, HDB3 (E1), or NRZ data. In E1 mode, each formatter supports FAS, CRC-4, and CAS frame formats, transmits common alarms such as AIS and RAI.

Each transmitter has an HDLC controllers which can be mapped into a single time slot, or Sa4 to Sa8 bits (E1 mode) or the FDL (T1 mode) and has 64-byte FIFO buffers in both the transmit and receive paths.

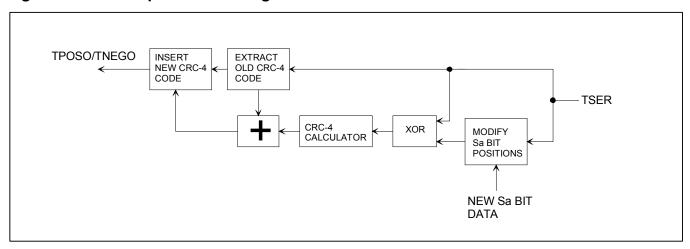
Host interface is simplified with status registers optimized for either interrupt driven or polled environments. In many cases, status bits are reported both real-time and latched on change-of-state with separate bits for each state change. Most latched bits can be mapped to generate an external interrupt on the $\overline{\text{INT}}$ pin.

Additional details concerning the operation of the E1 formatter are included within the register descriptions within this section.

8.6.10 Automatic Alarm Generation

The device can be programmed to automatically transmit AIS or Remote Alarm. When automatic AIS generation is enabled (TCR2.6 = 1), the device monitors the receive side framer to determine if any of the following conditions are present: loss of receive frame synchronization, AIS alarm (all one's) reception, or loss of receive carrier (or signal). If any one (or more) of the above conditions is present, then the framer forces an AIS.

When automatic RAI generation is enabled (TCR2.5 = 1), the framer monitors the receive side to determine if any of the following conditions are present: loss of receive frame synchronization, AIS alarm (all ones) reception, or loss of receive carrier (or signal) or if CRC4 multiframe synchronization cannot be found within 128ms of FAS synchronization (if CRC4 is enabled). If any one (or more) of the above conditions is present, then the framer will transmit a RAI alarm. RAI generation conforms to ETS 300 011 specifications and a constant Remote Alarm will be transmitted if the DS26556 cannot find CRC4 multiframe synchronization within 400ms as per G.706.


Note: It is an illegal state to have both automatic AIS generation and automatic Remote Alarm generation enabled at the same time.

8.6.11 G.706 Intermediate CRC-4 Updating (E1 Mode Only)

When a port is operating in a full or partial TDM mode and the E1 CRC framing structure is present in the data stream at TSER, the transmit framer can recalculate the CRC4 check-sum. The recalculation will take into account any changes made to the Sa bits by the host without disturbing any bit error information contained in CRC4 structure present at TSER.

The E1 transmit framer can implement the G.706 CRC-4 recalculation at intermediate path points. When this mode is enabled, the data stream presented at TSER will already have the FAS/NFAS, CRC multiframe alignment word and CRC-4 checksum in time slot 0. The user can modify the Sa bit positions and this change in data content will be used to modify the CRC-4 checksum. This modification however will not corrupt any error information the original CRC-4 checksum may contain. In this mode of operation, TSYNC must be configured to multiframe mode. The data at TSER must be aligned to the TSYNC signal. If TSYNC is an input then the user must assert TSYNC aligned at the beginning of the multiframe relative to TSER. If TSYNC is an output, the user must multiframe-align the data presented to TSER. This mode is enabled with the TCR3.0 control bit (CRC4R).

Figure 8-17 CRC Update Flow Diagram

8.6.12 E1 Transmit DS0 Monitoring Function

The DS26556 can monitor one DS0 64kbps channel in the transmit direction and one DS0 channel in the receive direction at the same time. In the transmit direction the user will determine which channel is to be monitored by properly setting the TCM0 to TCM4 bits in the TDS0SELregister. In the receive direction, the RCM0 to RCM4 bits in the RDS0SEL register need to be properly set. The DS0 channel pointed to by the TCM0 to TCM4 bits will appear in the Transmit DS0 Monitor (TDS0M) register and the DS0 channel pointed to by the RCM0 to RCM4 bits will appear in the Receive DS0 (RDS0M) register. The TCM4 to TCM0 and RCM4 to RCM0 bits should be programmed with the decimal decode of the appropriate T1or E1 channel. T1 channels 1 through 24 map to register values 0 through 23. E1 channels 1 through 32 map to register values 0 through 31. For example, if DS0 channel 6 in the transmit direction and DS0 channel 15 in the receive direction needed to be monitored, then the following values would be programmed into TDS0SEL and RDS0SEL:

ICM4 = 0	RCM4 = 0
TCM3 = 0	RCM3 = 1
TCM2 = 1	RCM2 = 1
TCM1 = 0	RCM1 = 1
TCM0 = 1	RCM0 = 0

8.6.13 E1 Transmit Signaling Operation

There are two methods of providing transmit signaling data—processor-based (i.e., software-based) or hardware-based. Processor-based refers to access through the transmit signaling registers, TS1 through TS16, while hardware-based refers to using the HTSIG pins. Hardware based signaling is available only when the port is configured in the multiplexed bus mode utilizing the high speed TDM port. Both methods can be used simultaneously. Note: Signaling data may already be imbedded in the transmit data streams at the TSER or HTDATA pins. In this case the two methods mentioned above may be used to update any or all channels.

8.6.13.1 Software Signaling

Signaling data is loaded into the Transmit Signaling registers (TS1–TS16) via the host interface. On multiframe boundaries, the contents of these registers are loaded into a shift register for placement in the appropriate bit position in the outgoing data stream. The user can utilize the Transmit Multiframe Interrupt in Latched Status Register 1 (TLS1.2) to know when to update the signaling bits. The user need not update any transmit signaling register for which there is no change of state for that register.

Each Transmit Signaling Register contains the TS16 CAS signaling (E1) for one time slot that will be inserted into the outgoing stream if enabled to do so via TCR1.6. Signaling data can be sourced from the TS registers on a perchannel basis by utilizing the Software Signaling Insertion Enable registers, SSIE1 through SSIE4.

TS16 carries the signaling information. This information can be in either CCS (Common Channel Signaling) or CAS (Channel Associated Signaling) format. The 32 time slots are referenced by two different channel number schemes

in E1. In "Channel" numbering, TS0 through TS31 are labeled channels 1 through 32. In "Phone Channel" numbering TS1 through TS15 are labeled channel 1 through channel 15 and TS17 through TS31 are labeled channel 15 through channel 30.

8.6.13.2 Hardware Signaling

Hardware signaling is only available when the port is configured to use the high speed TDM bus. **Note: the cell/packet interface is unavailable to this port in this mode.** In hardware mode, signaling data is input via the HTSIG pin. This signaling PCM stream is demultiplexed, buffered and inserted to the data stream input from the demultiplexed HTDATA pin.

The user has the ability to control which channels are to have signaling data from the HTSIG pin inserted into them on a per-channel basis via the THSCS1 through THSCS4 registers.

Figure 8-18 Time Slot Numbering Schemes

TS	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Channel	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Phone Channel		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

8.6.14 Fractional E1 Support (Gapped Clock Mode)

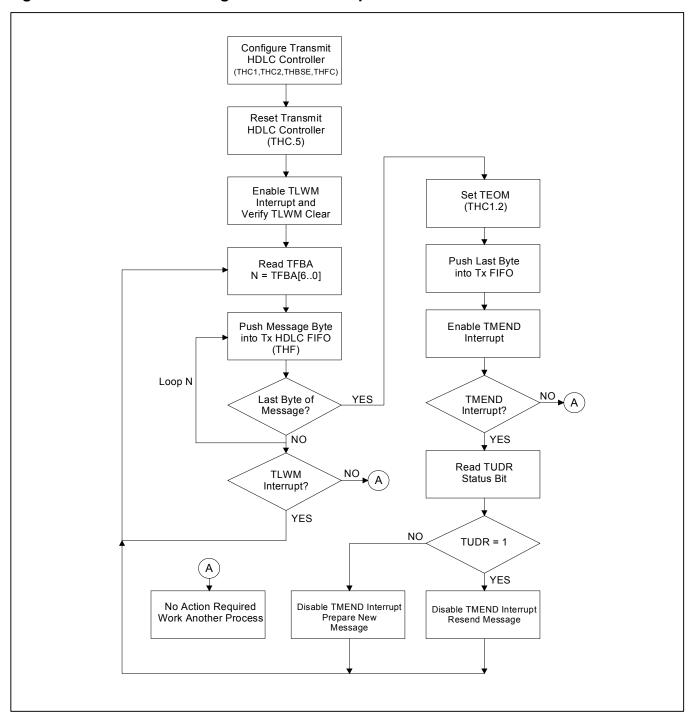
The DS26556 can be programmed to output gapped clocks for selected channels in transmit path. When the TCHMRK pin is in the channel clock mode and gapped channel clock is enabled, a gated clock is output on the TCHMRK pin during selected channel times. The channel selection is controlled via the transmit-gapped-clock channel-select registers (TGCCS1-TGCCS4). If TCHMRK is in the channel clock mode clock mode is enabled by the TGCLKEN bit (TESCR.6). Both 56kbps and 64kbps channel formats are supported as determined by TESCR.7. When 56kbps mode is selected, the clock corresponding to the Data/Control bit in the channel is omitted (only the seven most significant bits of the channel have clocks).

8.6.15 Additional (Sa) and International (Si) Bit Operation (E1 Mode)

On the transmit side, data is sampled from the TAF and TNAF registers with the setting of the Transmit Align Frame bit in Transmit Status Register 1 (TLS1.3). The host can use the TLS1.3 bit to know when to update the TAF and TNAF registers. It has $250\mu s$ to update the data or else the old data will be retransmitted. **NOTE: If the TAF an TNAF registers are only being used to source the align frame and non-align frame sync patterns then the host need only write once to these registers.** Data in the Si bit position will be overwritten if either the framer is programmed: (1) to source the Si bits from the TSER pin, (2) in the CRC4 mode, or (3) have automatic E-bit insertion enabled.

There is also a set of eight registers (TSiAF, TSiNAF, TRA, TSa4 to TSa8) that, via the Transmit Sa-Bit Control Register (TSaCR), can be programmed to insert both Si and Sa data. Data is sampled from these registers with the setting of the Transmit Multiframe bit in Status Register 1 (TLS1.3). The host can use the TLS1.3 bit to know when to update these registers. It has 2ms to update the data or else the old data will be retransmitted.

8.6.16 E1 Transmit HDLC Controller


Each framer port has an HDLC controller with 64-byte FIFOs.

The HDLC controller can be mapped into a single time slot, or Sa4 to Sa8 bits (E1 Mode) or the FDL (T1 mode). This block has 64-byte FIFO buffers in both the transmit and receive paths. The user can select any specific bits within the time slot(s) to assign to the HDLC controller, as well as specific Sa bits (E1 mode). The HDLC controllers automatically generate and detect flags, generate and check the CRC checksum, generate and detect abort sequences, stuff and destuff zeros, and byte align to the data stream.

8.6.17 E1 HDLC Transmit Example

The HDLC status registers in the DS26556 allow for flexible software interface to meet the user's preferences. When transmitting HDLC messages, the host can choose to be interrupt driven, or to poll to desired status registers, or a combination of polling and interrupt processes may be used.

Figure 8-19 E1 HDLC Message Transmit Example

8.6.18 Interfacing the E1 Transmitter to the BERT

If the Transmit BERT is enabled, data will be inserted from the BERT into the transmit formatter. Any single DS0 or combination of DS0s can be inserted into the data stream up to the entire T1 payload as controlled by the RBCS registers.

Details concerning the BERT can be found in Section 13.

8.6.19 E1 Transmit Synchronizer

The DS26556 transmitter can identify the E1 frame boundary, as well as the CRC multiframe boundaries within the incoming NRZ data stream at TSER. Control signals for the transmit synchronizer are located in the TSYNCC register. The Transmit Synchronizer Status (TSYNCS) register provides a latched status bit (LOFD) to indicate that a loss-of-frame synchronization has occurred, and a real-time bit (LOF) which is set high when the synchronizer is searching for frame/multiframe alignment. The LOFD bit can be enabled to cause an interrupt condition on $\overline{\text{INT}}$.

Note that when the transmit synchronizer is used, the TSYNC signal should be set as an output (TSIO = 1) and the recovered frame sync pulse will be output on this signal. The recovered CRC4 multiframe sync pulse will be output if enabled with TIOCR.0 (TSM = 1).

9 LINE INTERFACE UNIT (LIU)

The DS26556's LIU provides the necessary transmit pulse shaping and receive signal processing for long-haul, short-haul, FCC CSU build-outs, and clock-synchronization applications. The transmitter and receiver have software selectable, internal termination for 75Ω , 100Ω , 110Ω , and 120Ω networks. The LIU block also contains a jitter attenuator that can be assigned to either the transmit or receive path, or disabled. Several loopbacks are provided for network and system side diagnostics. Each port's LIU can be configured independently. The table below describes the registers involved in control and configuration of the LIUs.

9.1 LIU Transmitter

9.1.1 Pulse Shapes

The transmit pulse shape is configured on a port-by-port basis. Pulse shapes are typically measured and compared to the appropriate pulse template at two locations in the network. For T1 long haul and FCC CSU applications the pulse is measured at the near-end NI (Network Interface). For T1 short haul applications the pulse is measured at the far-end NI. All E1 pulse shapes are measured at the near-end NI.

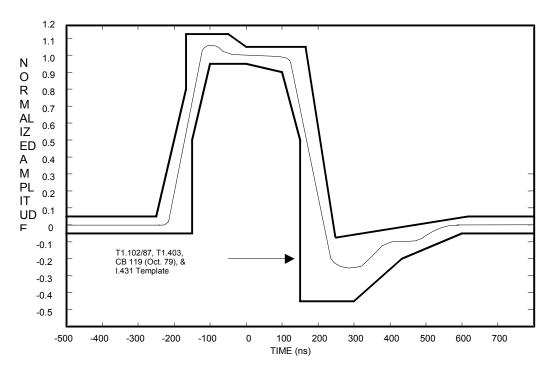
9.1.2 Transmit Termination

The LIU Transmit Impedance Selection Registers can be used to select an internal Transmit Terminating Impedance of 100Ω for T1, 110Ω for J1 Mode, 75Ω or 120Ω for E1 Mode, or no internal Termination for E1 or T1 Mode. In this case the user has to provide the Line Terminating Network. The transmit pulse shape and terminating impedance is selected by the LTCR register.

9.1.3 Power-Down and High-Z

The DS26556 provides the ability to individually power-down the transmitters and/or place the transmit drivers into a High-Z state via register bits or device pins. This is useful for Protection Switching applications.

The transmitters can be powered down by setting the TPDE bit in the LCCR2 register. Note that powering down the transmit LIU results in a High-Z state for the corresponding TTIP and TRING pins.

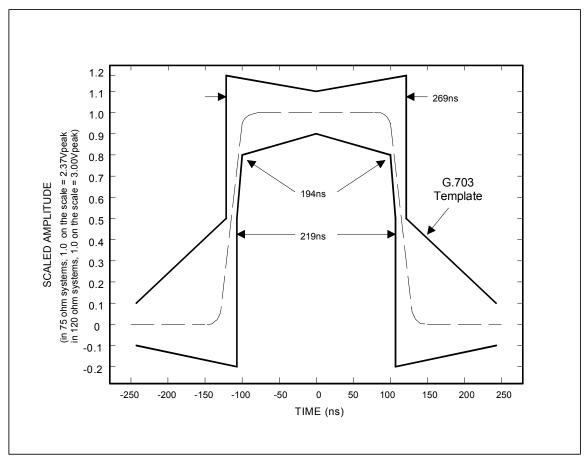

9.1.4 Transmit All Ones

When Transmit All Ones is invoked in the LIU block, continuous ones are transmitted using MCLK as the timing reference. Data and clock from the framer is ignored. Transmit all ones can be sent by setting a bit in the LCCR2 register. Also transmit all ones will be are sent if the corresponding receiver goes into LOS state and the ATOS bit is set in the LCCR2 register.

9.1.5 Driver Fail Monitor

The transmit drivers have a monitor that will detect short circuit and open-circuit conditions at the TTIP and TRING pins. The drive current will be limited if a short circuit is detected. The status registers can be used to alert the user to an open circuit or short circuit condition.

Figure 9-1 T1/J1 Transmit Pulse Templates

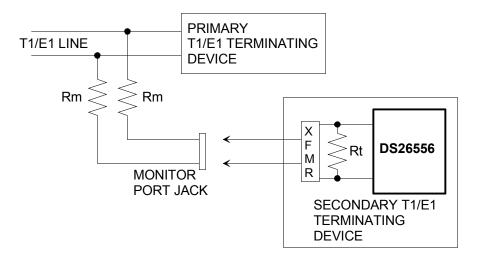

DSX-1 Template (per ANSI T1.102

empia	te (per	ANSII	١.	102 -			
MAXIM	UM CURV	Æ		MINIM	IUM CUR	/E	
UI	Time	Amp.		UI	Time	Amp.	
-0.77 -0.39 -0.27 -0.27	-500 -255 -175 -175	0.05 0.05 0.80 1.15		-0.77 -0.23 -0.23 -0.15	-500 -150 -150 -100	-0.05 -0.05 0.50 0.95	
-0.12 0.00 0.27 0.35 0.93 1.16	-75 0 175 225 600 750	1.15 1.05 1.05 -0.07 0.05 0.05		0.00 0.15 0.23 0.23 0.46 0.66 0.93	0 100 150 150 300 430 600	0.95 0.90 0.50 -0.45 -0.45 -0.20 -0.05	
				1.16	750	-0.05	

DS1 Template (per ANSI T1.403 -

MAXIMUM CURVE	MINIM	IUM CUR\	/E
UI Time Amp.	UI	Time	Amp.
0.77 -500 0.05 -0.39 -255 0.05 -0.27 -175 0.80 -0.27 -175 1.20 -0.12 -75 1.20 0.00 0 1.05 0.27 175 1.05 0.27 175 0.05 0.77 600 0.05 1.16 750 0.05	-0.77 -0.23 -0.23 -0.15 0.00 0.15 0.23 0.23 0.46 0.61 0.93 1.16	-500 -150 -150 -100 0 100 150 150 300 430 600 750	-0.05 -0.05 0.50 0.95 0.95 0.90 0.50 -0.45 -0.45 -0.26 -0.05

9.2 Receiver


The receiver can function with "cable loss" signal attenuation of up to 36 dB for T1 Mode and 43 dB for E1 Mode. The receiver's sensitivity can be limited to 12 dB for E1 mode or 15dB for T1 mode. For bridged monitor applications a resistive gain setting can be enabled to provide 14, 20, 26, and 32 dB of resistive gain.

The peak detector and data slicer process the received signal. The output of the data slicer goes to a clock and data recovery circuit. A 2.048/1.544 PLL is internally multiplied by 16 via another internal PLL and fed to the clock recovery system that derives the E1 or T1 clock. The clock recovery system uses the clock from the PLL circuit to form a 16 times over sampler, which is used to recover the clock and data. This over sampling technique offers outstanding performance to meet jitter tolerance specifications.

9.2.1 Receiver Monitor Mode

Bridged monitor port isolation resistors typically cause resistive losses of 20dB(T1) and 32dB(E1). The receiver front end can be programmed for a fixed gain of 14dB, 20dB, 26dB, and 32dB to compensate for the monitor port's loss. 12dB to 30dB of "cable loss" compensations is still available in monitor applications. See table as shown in LIU Receive Control Register (Section 9.2.1).

Figure 9-3 Typical Monitor Operation

9.2.2 Peak Detector and Slicer

The Slicer determines the polarity and presence of the received data. The output of the slicer is sent to the clock and data recovery circuitry for extraction of data and clock. The slicer has a built-in peak detector for determination of the slicing threshold.

9.2.3 Clock and Data Recovery

The resultant E1 or T1/J1 clock derived from the 2.048/1.544 PLL (JACLK in) is internally multiplied by 16 via another internal PLL and fed to the clock recovery system. The clock recovery system uses the clock from the PLL circuit to form a 16 times over sampler, which is used to recover the clock and data. This oversampling technique offers outstanding performance to meet jitter tolerance specifications shown in <u>Figure 9-5</u>.

9.2.4 Receive Level Indicator

The signal strength at RTIP and RRING is reported in approximate 2.5dB increments via RSL3-RSL0 in the LRSL register. This feature is helpful when trouble-shooting line-performance problems. The DS26556 can initiate an interrupt whenever the input falls below a certain level through the input-level under-threshold indicator (SR1.7). Using the RLT0-RLT4 bits of the CCR4 register, the user can set a threshold in 2.5dB increments. The SR1.7 bit is set whenever the input level at RTIP and RRING falls below the threshold set by the value in RLT0-RLT4. The level must remain below the programmed threshold for approximately 50ms for this bit to be set. The accuracy of the receive level indication is ±1 LSB (2.5dB) from 25C to 85C and ±2 LSB's (5dB) from -40C to 25C.

9.2.5 Loss of Signal

The DS26556 uses both the digital and analog loss detection method in compliance with the latest T1.231 for T1/J1 and ITU G.775 or ETSI 300 233 for E1 mode of operation.

LOS is detected if the received signal level falls below a threshold for a certain duration. Alternatively, this can be termed as having received "zeros" for a certain duration. The signal level and timing duration are defined in accordance with the T1.231 or G.775 or ETSI 300 233 specifications.

For short haul Mode, the loss detection thresholds are based on cable loss of 12/18 dB for both T1/J1 and E1 Mode. The loss thresholds are selectable based on criteria defined in <u>Table 9-1</u>. For long-haul mode, the LOS Detection threshold is based on cable loss of 30/38 dB for T1/J1 and 30/45 dB for E1 Mode. Note there is no explicit bit called short-haul mode selection.

The setting for the receiver sensitivity is through the LIU receive impedance and sensitivity monitor.

The loss state is exited when the receiver detects a certain ones density at a higher signal level than the loss detection level. The loss detection signal level and loss reset signal level are defined with hysteresis to prevent the receiver from bouncing between "LOS" and "no LOS" states.

The following table outlines the specifications governing the loss function:

Table 9-1 Loss Criteria T1.231, G.775 and ETSI 300 233 Specifications

		STANDARD	
	T1.231	ITU G.775	ETSI 300 233
Loss Detection Criteria	No pulses are detected for 175 +/- 75 bits.	No pulses are detected for duration of 10 to 255 bit periods.	No pulses are detected for a duration of 2048 bit periods or 1 msec
Loss Reset Criteria	Loss is terminated if a duration of 12.5% ones are detected over duration of 175 +/- 75 bits. Loss is not terminated if 8 consecutive zeros are found if B8ZS encoding is used. If B8ZS is not used loss is not terminated if 100 consecutive pulses are zero.	The incoming signal has transitions for duration of 10 to 255 bit periods.	Loss reset criteria is not defined.

9.2.5.1 ANSI T1.231 for T1 and J1 Modes

For Short-Haul Mode, loss is detected if the received signal level is less than 15/21 dB for a duration of 192 bit periods. LOS is reset if the all of the following criteria are met:

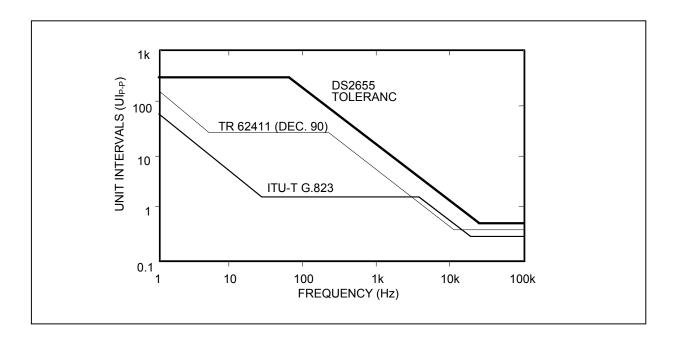
- 24 or more ones are detected in 192-bit period with a detection threshold of 12/18 dB measured at RTIP and RRING.
- During the 192 bits less than 100 consecutive zeros are detected.

For Long-Haul Mode, loss is detected if the received signal level is less than 33/39 dB for a duration of 192 bit periods. LOS is reset if the all of the following criteria are met:

- 24 or more ones are detected in 192-bit period with a detection threshold of 30/36 dB measured at RTIP and RRING.
- During the 192 bits less than 100 consecutive zeros are detected.

9.2.5.2 ITU G.775 for E1 Modes

For Short-Haul Mode, LOS is detected if the received signal level is less than 15/21 dB for a continuous duration of 192 bit periods. LOS is reset if the receive signal level is greater than 12/18 dB for a duration of 192 bit periods.


For Long-Haul Mode, LOS is detected if the received signal level is less than 33/46 dB for a continuous duration of 192 bit periods. LOS is reset if the receive signal level is greater than 30/43.

9.2.5.3 ETSI 200 233 for E1 Modes

For short-haul mode, LOS is detected if the received signal level is less than 15/21 dB for a continuous duration of 2048 (1 msec) bit periods. LOS is reset if the receive signal level is greater than 12/18 dB for a duration of 192 bit periods.

For long-haul mode, LOS is detected if the received signal level is less than 33/46 dB for a continuous duration of 192 bit periods. LOS is reset if the receive signal level is greater than 30/43 dB for a duration of 192 bit periods.

Figure 9-4 Jitter Tolerance

9.3 Jitter Attenuator

The DS26556's jitter attenuator that can be set to a depth of either 32 or 128 bits via the JADS bit in the LIU Common Control Register (LCCR).

The 128-bit mode is used in applications where large excursions of wander are expected. The 32-bit mode is used in delay sensitive applications. The characteristics of the attenuation are shown in <u>Figure 9-5</u>. The jitter attenuator can be placed in either the receive path or the transmit path or disabled by appropriately setting the JAPS1 and JAPS0 bits in the LIU Common Control Register (LCCR).

In order for the jitter attenuator to operate properly, a 2.048 MHz or multiple thereof or 1.544 MHz clock or multiple thereof must be applied at MCLK. ITU specification G.703 requires an accuracy of +/-50 ppm for both T1/J1 and E1 applications. TR62411 and ANSI specs require an accuracy of +/- 32 ppm for T1/J1 interfaces. Onboard circuitry adjusts either the recovered clock from the clock/data recovery block or the clock applied at the TCLK pin to create a smooth jitter free clock, which is used to clock data out of the jitter attenuator FIFO. It is acceptable to provide a gapped/bursty clock at the TCLK pin if the jitter attenuator is placed on the transmit side. If the incoming jitter exceeds either 120 UI_{P-P} (buffer depth is 128 bits) or 28 UI_{P-P} (buffer depth is 32 bits), then the DS26556 will set the jitter attenuator limit trip (JALTSLS) bit in the LIU latched status Register (LLSR) when the FIFO is 8 bits from underflow or overflow. The FIFO pointer will be 8 bits or 120 bits. In T1/J1 Mode the Jitter Attenuator corner frequency is 3.75 Hz and in E1 Mode it is 0.6 Hz.

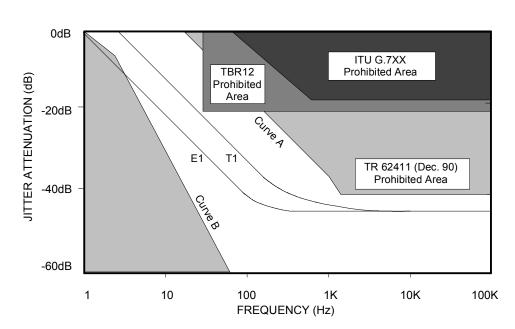


Figure 9-5 Jitter Attenuation

9.4 LIU Loopbacks

The DS26556 provides three loopbacks in the LIU block: analog loopback (ALB), local loopback (LLB), and remote loopback (RLB). Remote loopback (RLB) and local loopback (LLB) may be enabled simultaneously. Additionally, the framer block provides framer loopback (FLB) discussed in the framer section of the datasheet.

9.4.1 Analog Loopback

TTIP and TRING are looped to RTIP and RRING. Externally, signals at RTIP and RRING are ignored.

9.4.2 Local Loopback

Data from the transmit backplane interface is looped back to the receive backplane interface. Data form the transmit system backplane will continue to be transmitted as normal.

9.4.3 Remote Loopback

The inputs decoded from the Receive LIU are looped back to the Transmit LIU. The inputs from the Transmit Framer are ignored during a remote loopback.

10 OVERALL REGISTER MAP

Table 10-1 Overall Register Map

Address	Description
0000 – 01FF	Port 1 Framer
0200 – 03FF	Port 2 Framer
0400 – 05FF	Port 3 Framer
0600 – 07FF	Port 4 Framer
0800 – 09FF	Port 1 LIU
0A00 – 0BFF	Port 2 LIU
0C00 - 0DFF	Port 3 LIU
0E00 – 0FFF	Port 4 LIU
1000 – 11FF	Port 1 Cell/Packet Processor
1200 – 13FF	Port 2 Cell/Packet Processor
1400 – 15FF	Port 3 Cell/Packet Processor
1600 – 17FF	Port 4 Cell/Packet Processor
1800 – 18FF	Global Registers
1900 – 19FF	System Interface Registers
1A00 - 1FFF	Unused

The address offset for each port:

Port 1 – No Offset

Port 2 - Port 1 Address + 0200 Hex

Port 3 - Port 1 Address + 0400 Hex

Port 4 – Port 1 Address + 0600 Hex

Table 10-2 Per Port Register Map

Address offset	Description
0000 – 00DF	RX FRAMER
00E0 - 00EF	BERT
00F0 - 00FF	UNUSED
0100 – 01DF	TX FRAMER
01E0 – 01FF	UNUSED
0800 – 080F	LIU
0810 – 09FF	UNUSED
1000 – 103F	RX CELL/PKT PROCESSOR
1040 – 104F	POS/PHY GEN
1050 – 107F	UNUSED
1080 – 108F	RX FIFO
1090 – 10FF	UNUSED
1100 – 111F	TX CELL/PKT PROCESSOR
1120 – 117F	UNUSED
1180 – 118F	TX FIFO
1190 – 11FF	UNUSED
1800 – 181F	GLOBAL REGISTERS (not per port)
1820 – 18FF	UNUSED
1900 – 190F	RX SYSTEM (not per port)
1910 – 193F	UNUSED
1940 – 194F	TX SYSTEM (not per port)
1950 – 1FFF	UNUSED

11 REGISTER MAPS AND DESCRIPTIONS

11.1 Global Registers

Table 11-1 Global Register Map

ADDRESS	NAME	FUNCTION
1800	IDR	Device ID Register
1801	GCR1	Global Control Register 1
1802	GCR2	Global Control Register 2
1803	GCR3	Global Control Register 3
1804	GCR4	Global Control Register 4
1805	GCR5	Global Control Register 5
1806	GCCR	Global Clock Control Register
1807	GSRR	Global Software Reset Register
1808	GRTPFS	Global RCHMRK and TCHMRK Pin Function Select Register
1809	GSR1	Global Status Register 1
180A	GSR2	Global Status Register 2
180B	GSR3	Global Status Register 3
180C	GSR4	Global Status Register 4
180D	GSRL4	Global Status Register Latched 4
180E	GIM1	Global Interrupt Mask Register 1
180F	GIM2	Global Interrupt Mask Register 2
1810	GIM3	Global Interrupt Mask Register 3
1811	GIM4	Global Interrupt Mask Register Latched 4
1812 – 18FF	_	Unused. Must be set = 0 for proper operation.

11.1.1 Global Control Registers

Register Name: IDR

Register Description: Device Identification Register

Address (hex): 1800

Bit#	7	6	5	4	3	2	1	0
Name	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
Default	0	0	0	0	0	0	0	0

Bits 7 to 4: Device ID (ID7 to ID4) The upper four bits of the IDR are used to display the DS26556 ID.

Bits 3 to 0 : Chip Revision Bits (ID3 to ID0) The lower four bits of the IDR are used to display the die revision of the chip. IDO is the LSB of a decimal code that represents the chip revision.

DEVICE	ID (ID7 to ID4)
DS26556	0000

Register Name:

GCR1

Register Description:

Global Control Register 1

Address (hex):

1801

Bit#	
Name	
Default	

7	6	5	4	3	2	1	0
SIW1	SIW0	SIM1	SIM0	DIREN	RST	RSTDP	GRST
0	0	0	0	0	0	0	0

Bits 7 to 6 : System Interface Bus Width (SIW[1:0]) These bits configure the system bus width.

00 = 8 bit

01 = 16 bit

Bits 5 to 4: System Interface Mode1 & 0 (SIM[1:0]) These bits configure the system bus mode.

00 = UTOPIA II

01 = UTOPIA 3

10 = POS-PHY II

11 = POS-PHY 3

Bit 3: Direct Status Enable (DIREN) This bit selects between the direct status and polled status modes for UTOPIA and POS-PHY.

0 = Polled status mode

1 = Direct status mode

Bit 2 : (RST) When this bit is set, all of the UTOPIA/POS-PHY internal data path and status and control registers on all ports will be reset to their default state. This bit must be set high for a minimum of 100ns.

0 = Normal operation.

1 = Force all internal registers to their default values

Bit 1 : (RSTDP) When this bit is set, it will force all of the UTOPIA/POS-PHY internal data path registers in the to their default state. This bit must be set high for a minimum of 100ns.

0 = Normal operation.

1 = Force all framer data path registers to their default values.

Bit 0 : Global Reset (GRST) When this bit is set, all of the internal data path and status and control registers of the DS26556, on all ports, will be reset to their default state. This bit must be set high for a minimum of 100ns.

0 = Normal operation.

1 = Force all internal registers to their default values.

98 of 362

Register Name: GCR2

Register Description: Global Control Register 2

Address (hex): 1802

Bit#	7	6	5	4	3	2	1	0
Name	-	-	-	-	-	BPMU	GPMU	TMEI
Default	0	0	0	0	0	0	0	0

Bits 7 to 3: Unused. Must be set = 0 for proper operation.

Bit 2: BERT Performance Monitor Register Update (BPMU) This bit is used to update all of the performance monitor registers (BERT) configured to use this bit. The performance registers configured to use this signal will be updated when this bit is toggled low to high, and the counters will be reset. The bit should remain high until the performance register update status bit goes high, then it should be brought back low which clears the PMS status bit.

Bit 1 : Global Performance Monitor Register Update (GPMU) This bit is used to update all of the performance monitor registers configured to use this bit. The performance registers configured to use this signal will be updated when this bit is toggled low to high with the latest count value, and the counters will be reset. The bit should remain high until the performance register update status bit goes high, then it should be brought back low which clears the PMS status bit.

Bit 0 : Transmit Manual Error Insert (TMEI) This bit is used insert an error in all ports and error insertion logic configured for global error insertion. An error(s) is inserted at the next opportunity when this bit transitions from low to high.

Register Name: GCR3

Register Description: Global Control Register 3

Address (hex): 1803

Bit#	7	6	5	4	3	2	1	0
Name	-	-	-	-	UPBWE	LIUBWE	BTBWE	FRBWE
Default	0	0	0	0	0	0	0	0

Bits 7 to 4: Unused. Must be set = 0 for proper operation.

Bit 3 : UTOPIA/POS-PHY Bulk Write Enable (UPBWE) This bit enables the UTOPIA/POS-PHY bulk write mode. When this bit is set, a write to the register in the Cell/Packet interface of any port will write to the same register in all ports. Reading the registers of any port is not supported and will read back undefined data.

Bit 2 : LIU Bulk Write Enable (LIUBWE) This bit enables the LIU bulk write mode. When this bit is set, a write to the register of any LIU will write to the same register in all the LIUs. Reading the registers of any LIU is not supported and will read back undefined data.

Bit 1 : BERT Bulk Write Enable (BTBWE) This bit enables the BERT bulk write mode. When this bit is set, a write to the register of any BERT will write to the same register in all BERTs. Reading the registers of any BERT is not supported and will read back undefined data.

Bit 0 : Framer Bulk Write Enable (FRBWE) This bit enables the framer bulk write mode. When this bit is set, a write to the register of any framer will write to the same register in all the framers. Reading the registers of any framer is not supported and will read back undefined data.

Register Name: GCR4

Register Description: Global Control Register 4

Address (hex): 1804

Bit#	7	6	5	4	3	2	1	0
Name	IBOMS1	IBOMS0	BPCLK1	BPCLK0	RF/RMSYN	RLOF/ LOTC	GCLE	GIPI
					С			
Default	0	0	0	0	0	0	0	0

Bits 7 to 6 : Interleave Bus Operation Mode Select (IBOMS[1:0]) These bits determine the configuration of the IBO/Estore (interleaved bus/Elastic Store) multiplexer. These bits should be used in conjunction with the Rx and Tx IBO and ESTORE control registers within each of the framer units.

IBOMS1	IBOMS0	Devices
0	0	Disabled
0	1	1
1	0	2
1	1	4

Bit 5 to 4: Backplane Clock Select (BPCLK[1:0]) These bits determine the clock frequency output on the BPCLK pin.

BPCLK1	BPCLK0	BP Freq
0	0	2.048
0	1	4.096
1	0	8.192
1	1	8.192

Bit 3: Receive Frame/Multiframe Sync Select (RF/RMSYNC) This bit controls the function of all four RFSYNC/RMSYNC pins.

0 = RF/RMSYNC pins output RFSYNC.

1 = RF/RMSYNC pins output RMSYNC.

Bit 2 : Receive Loss of Frame / Loss of transmit clock (RLOF/LOTC) This bit controls the function of all four RLOF/LOTC pins.

0 = RLOF/LOTC pins output RLOF(1-4) (Receive Loss of Frame)

1 = RLOF/LOTC pins output LOTC(1-4) (Loss of Transmit clock)

Bit 1 : Global Counter Latch Enable (GCLE) A low to high transition on this bit will, when enabled, latch the framer performance monitor counters. Each framer can be independently enabled to accept this input. Must be cleared and set again to perform another counter latch. The counters in the cell / packet interface block cannot be latched from this bit.

Bit 0 : Global Interrupt Pin Inhibit (GIPI)

0 = Normal Operation - interrupt pin (INT_B) will toggle low on an un-masked interrupt condition

1 = Interrupt Inhibit - interrupt pin (INT_B) is forced high (inactive) when this bit is set.

Register Name: GCR5

Register Description: Global Control Register 5

Address (hex): 1805

Bit#	7	6	5	4	3	2	1	0
Name	IBEN4	IBEN3	IBEN2	IBEN1	-	SSEL1	SSEL0	SYNCIO
Default	0	0	0	0	0	0	0	0

Bit 7: IBO Enable 4 (IBOEN4) This bit is used to determine if framer 4 is part of the IBO bus.

0 = Framer 4 is not enabled for IBO.

1 = Framer 4 is enabled for IBO.

Bit 6: IBO Enable 3 (IBOEN3) This bit is used to determine if framer 3 is part of the IBO bus.

0 = Framer 3 is not enabled for IBO.

1 = Framer 3 is enabled for IBO.

Bit 5: IBO Enable 2 (IBOEN2) This bit is used to determine if framer 2 is part of the IBO bus.

0 = Framer2 is not enabled for IBO.

1 = Framer2 is enabled for IBO.

Bit 4: IBO Enable 1 (IBOEN1) This bit is used to determine if framer1 is part of the IBO bus.

0 = Framer 1 is not enabled for IBO.

1 = Framer 1 is enabled for IBO.

Bit 3: Unused. Must be set = 0 for proper operation.

Bits 2 to 1 : HSSYNC Select (HSEL[1:0]) When SYNCIO is low, these bits are used to determine which framer drives the sync pulse.

HSEL1	HSEL0	Framer
0	0	FR1
0	1	FR2
1	0	FR3
1	1	FR4

Bit 0: HSSYNC I/O Select (HSSYNCIO)

0 = HSSYNC is an output. One of the framers' RSYNC signal (based on HSEL[1:0]) is used as the sync pulse for IBO mode.

1 = HSSYNC is an input. External frame sync is used as the sync pulse for IBO mode.

Register Name: GCCR

Register Description: Global Clock Control Register

Address (hex): 1806

Bit#	7	6	5	4	3	2	1	0
Name	-	BPREF2	BPREF1	BPREF0	BPFREQ	MFREQ	MPS1	MPS0
Default	0	0	0	0	0	0	0	0

Bit 7: Unused. Must be set = 0 for proper operation.

Bits 6 to 4 : Backplane Reference Clock Select (BPREF[2:0]) This is used to select the reference clock for BPCLK generation. The BPCLK can be generated from any of the LIU recovered clocks, external reference or derivatives of MCLK input.

BPREFSEL[2:0]	BP Ref Clock Select	BPFREQ
000	T1 LIU RCLK1	1
000	E1 LIU RCLK1	0
001	T1 LIU RCLK2	1
001	E1 LIU RCLK2	0
010	T1 LIU RCLK3	1
010	E1 LIU RCLK3	0
011	T1 LIU RCLK4	1
011	E1 LIU RCLK4	0
100	1.544MHz derived from MCLK. Designates REFCLK to be an output and outputs 1.544MHz.	1
101	2.048MHz derived from MCLK. Designates REFCLK to be an output and outputs 2.048MHz	0
110	External REFCLK. Designates REFCLK to be an input (either 1.544MHz or 2.048MHz)	1 or 0

Bit 3 : Backplane Reference Frequency Select (BPFREQ) In conjunction with BPREF[2:0], this bit selects the Reference Clock frequency for the DS26556 Backplane.

- 0 = Backplane Reference Clock (determined by BPREFSEL[2:0]) is 2.048MHz.
- 1 = Backplane Reference Clock (determined by BPREFSEL[2:0]) is 1.544MHz

Note that the setting of this bit should match the T1/E1 selection for the LIU whose recovered clock is being used to generate the Backplane clock.

Bit 2: MCLK Frequency Selection (MFREQ) This bit selects the external MCLK frequency for the DS26556.

- 0 = MCLK input is 2.048MHz or a multiple thereof.
- 1 = MCLK input is 1.544MHz or a multiple thereof.

Each of the LIU Framers can be selected for T1/J1 or E1 operation.

BitS 1 to 0 : Master Period Select (MPS[1:0]) In conjunction with the MFREQ bit, these bits select the external MCLK frequency for the DS26556.

MPS1	MPS0	Frequency (MHz)	MFREQ
0	0	1.544	1
0	1	3.088	1
1	0	6.176	1
1	1	12.352	1
0	0	2.048	0
0	1	4.096	0
1	0	8.192	0
1	1	16.384	0

Register Name: GSRR

Register Description: Global Software Reset Register

Address (hex): 1807

Bit# 7 5 0 6 4 3 LRST4 LRST3 LRST2 LRST1 FBRST4 FBRST3 FBRST2 FBRST1 Name Default 0 0 0 0 n 0 0 0

Bit 7 to 4: LIU Software Resets for Ports 1-4 (LRST[4:1])

0 = Normal Operation

1 = Resets the LIU

Bits 3 to 0: Framer/BERT Software Resets for Ports 1-4 (FBRST[4:1])

0 = Normal Operation

1 = Resets the Framer/BERT

Register Name: GRTPFS

Register Description: Global RCHMRK and TCHMRK Pin Function Select Register

Address (hex): 1807

Bit# 5 0 7 6 P4TFS P3TFS P2TFS P1TFS P4RFS P3RFS P2RFS P1RFS Name Default 0 0 0 0 0 0 0 0

Bit 7 : Port 4 TCHMRK Pin Function Select (P4TFS)

0 = TCHMRK in cell/packet mapping mode.

1 = TCHMRK in channel clock mode.

Bit 6: Port 3 TCHMRK Pin Function Select (P3TFS)

0 = TCHMRK in cell/packet mapping mode.

1 = TCHMRK in channel clock mode.

Bit 5 : Port 2 TCHMRK Pin Function Select (P2TFS)

0 = TCHMRK in cell/packet mapping mode.

1 = TCHMRK in channel clock mode.

Bit 4: Port 1 TCHMRK Pin Function Select (P1TFS)

0 = TCHMRK in cell/packet mapping mode.

1 = TCHMRK in channel clock mode.

Bit 3: Port 4 RCHMRK Pin Function Select (P4RFS)

0 = RCHMRK in cell/packet mapping mode.

1 = RCHMRK in channel clock mode.

Bit 2: Port 3 RCHMRK Pin Function Select (P3RFS)

0 = RCHMRK in cell/packet mapping mode.

1 = RCHMRK in channel clock mode.

Bit 1 : Port 2 RCHMRK Pin Function Select (P2RFS)

0 = RCHMRK in cell/packet mapping mode.

1 = RCHMRK in channel clock mode.

Bit 0 : Port 1 RCHMRK Pin Function Select (P1RFS)

0 = RCHMRK in cell/packet mapping mode.

1 = RCHMRK in channel clock mode.

11.1.2 Global Status Registers

Register Name: **GSR1**

Register Description: Global Status Register 1

Address (hex): 1809

Bit#	7	6	5	4	3	2	1	0
Name	BIS4	BIS3	BIS2	BIS1	FIS4	FIS3	FIS2	FIS1
Default	0	0	0	0	0	0	0	0

Bit 7: BERT Interrupt Status 4 (BIS4)

0 = Bert 4 has not issued an interrupt 1 = Bert 4 has issued an interrupt

Bit 6 : BERT Interrupt Status 3 (BIS3)

0 = Bert 3 has not issued an interrupt 1 = Bert 3 has issued an interrupt

Bit 5 : BERT Interrupt Status 2 (BIS2)

0 = Bert 2 has not issued an interrupt 1 = Bert 2 has issued an interrupt

Bit 4 : BERT Interrupt Status 1 (BIS1)

0 = Bert 1 has not issued an interrupt 1 = Bert 1 has issued an interrupt

Bit 3: Framer Interrupt Status 4 (FIS4)

0 = Framer 4 has not issued an interrupt 1 = Framer 4 has issued an interrupt

Bit 2 : Framer Interrupt Status 3 (FIS3)

0 = Framer 3 has not issued an interrupt 1 = Framer 3 has issued an interrupt

Bit 1 : Framer Interrupt Status 2 (FIS2)

0 = Framer 2 has not issued an interrupt 1 = Framer 2 has issued an interrupt

Bit 0 : Framer Interrupt Status 1 (FIS1)

0 = Framer 1 has not issued an interrupt 1 = Framer 1 has issued an interrupt Register Name: GIMR1

Register Description: Global Interrupt Mask Register 1

Address (hex): 180E

Bit #	7	6	5	4	3	2	1	0
Name	BIM4	BIM3	BIM2	BIM1	FIM4	FIM3	FIM2	FIM1
Default	0	0	0	0	0	0	0	0

Bit 7: BERT Interrupt Mask 4 (BIM4)

0 = interrupt masked1 = interrupt enabled

Bit 6: BERT Interrupt Mask 3 (BIM3)

0 = interrupt masked1 = interrupt enabled

Bit 5 : BERT Interrupt Mask 2 (BIM2)

0 = interrupt masked1 = interrupt enabled

Bit 4: BERT Interrupt Mask 1 (BIM1)

0 = interrupt masked1 = interrupt enabled

Bit 3: Framer Interrupt Mask 4 (FIM4)

0 = interrupt masked1 = interrupt enabled

Bit 2: Framer Interrupt Mask 3 (FIM3)

0 = interrupt masked1 = interrupt enabled

Bit 1: Framer Interrupt Mask 2 (FIM2)

0 = interrupt masked 1 = interrupt enabled

Bit 0 : Framer Interrupt Mask 1 (FIM1)

0 = interrupt masked 1 = interrupt enabled Register Name: GSR2

Register Description: Global Status Register 2

Address (hex): 180A

Bit #	7	6	5	4	3	2	1	0
Name	UPIS4	UPIS3	UPIS2	UPIS1	LIS4	LIS3	LIS2	LIS1
Default	0	0	0	0	0	0	0	0

Bit 7: UTOPIA/POS-PHY Interrupt Status 4 (UPIS4)

0 = UTOPIA/POS-PHY Port 4 has not issued an interrupt 1 = UTOPIA/POS-PHY Port 4 has issued an interrupt

Bit 6: UTOPIA/POS-PHY Interrupt Status 3 (UPIS3)

0 = UTOPIA/POS-PHY Port 3 has not issued an interrupt 1 = UTOPIA/POS-PHY Port 3 has issued an interrupt

Bit 5: UTOPIA/POS-PHY Interrupt Status 2 (UPIS2)

0 = UTOPIA/POS-PHY Port 2 has not issued an interrupt 1 = UTOPIA/POS-PHY Port 2 has issued an interrupt

Bit 4: UTOPIA/POS-PHY Interrupt Status 1 (UPIS1)

0 = UTOPIA/POS-PHY Port 1 has not issued an interrupt 1 = UTOPIA/POS-PHY Port 1 has issued an interrupt

Bit 3 : LIU Interrupt Status 4 (LIS4)

0 = LIU 4 has not issued an interrupt 1 = LIU 4 has issued an interrupt

Bit 2 : LIU Interrupt Status 3 (LIS3)

0 = LIU 3 has not issued an interrupt 1 = LIU 3 has issued an interrupt

Bit 1 : LIU Interrupt Status 2 (LIS2)

0 = LIU 2 has not issued an interrupt 1 = LIU 2 has issued an interrupt

Bit 0 : LIU Interrupt Status 1 (LIS1)

0 = LIU 1 has not issued an interrupt 1 = LIU 1 has issued an interrupt Register Name: GIMR2

Register Description: Global Interrupt Mask Register 2

Address (hex): 180F

Bit #	7	6	5	4	3	2	1	0
Name	UPIM4	UPIM3	UPIM2	UPIM1	LIM4	LIM3	LIM2	LIM1
Default	0	0	0	0	0	0	0	0

Bit 7: UTOPIA/POS-PHY Interrupt Mask 4 (UPIM4)

0 = interrupt masked1 = interrupt enabled

Bit 6: UTOPIA/POS-PHY Interrupt Mask 3 (UPIM3)

0 = interrupt masked 1 = interrupt enabled

Bit 5: UTOPIA/POS-PHY Interrupt Mask 2 (UPIM2)

0 = interrupt masked 1 = interrupt enabled

Bit 4: UTOPIA/POS-PHY Interrupt Mask 1 (UPIM1)

0 = interrupt masked1 = interrupt enabled

Bit 3 : LIU Interrupt Mask 4 (LIM4)

0 = interrupt masked1 = interrupt enabled

Bit 2 : LIU Interrupt Mask 3 (LIM3)

0 = interrupt masked1 = interrupt enabled

Bit 1 : LIU Interrupt Mask 2 (LIM2)

0 = interrupt masked1 = interrupt enabled

Bit 0 : LIU Interrupt Mask 1 (LIM1)

0 = interrupt masked 1 = interrupt enabled Register Name: GSR3

Register Description: Global Status Register 3

Address (hex): 180B

Bit #	7	6	5	4	3	2	1	0
Name	-	-	-	-	-	-	-	TSSR
Default	0	0	0	0	0	0	0	0

Bit 7 - 1: Unused.

Bit 0 : Transmit System Interface Status Register Interrupt Status (TSSR) This bit is set when any of the latched status register bits in the transmit system interface of the POS/PHY block are set and enabled for interrupt.

Register Name: GIMR3

Register Description: Global Interrupt Mask Register 3

Address (hex): 1810

Bit #	7	6	5	4	3	2	1	0
Name								TSSR
Default	0	0	0	0	0	0	0	0

Bit 7 – 1: Unused. Must be set = 0 for proper operation.

Bit 0 : Transmit System Interface Status Register Interrupt Mask (TSSR)

0 = interrupt masked 1 = interrupt enabled

Register Name: **GSR4**

Register Description: Global Status Register 4

Address (hex): 180C

Bit #	7	6	5	4	3	2	1	0
Name	-	-	-	-	-	-	BPMS	GPMS
Default	0	0	0	0	0	0	0	0

Bit 7 - 2: Unused

Bit 1 : BERT Performance Monitoring Update Status (BPMS) This bit is set when all of the port performance register update status bits (BERT PMS) are set. It is an AND of all the BERT port PMU status bits.

Bit 0 : Global Performance Monitoring Update Status (GPMS) This bit is set when all of the port performance register update status bits (PSR:PMU), that are enabled for global update control (PCR2:PMUM=1), are set. It is an AND of all the globally enabled port PMU status bits. In global software update mode, the global update request bit (GCR:GPMU) should be held high until this status bit goes high.

Register Name: GSRL4

Register Description: Global Status Register Latched 4

Address (hex): 180D

Bit #	7	6	5	4	3	2	1	0
Name	-	-	-	-	-	-	BPMS	GPMS
Default	0	0	0	0	0	0	0	0

Bit 7 - 2: Unused.

Bit 1 : BERT Performance Monitoring Update Status (BPMS) This bit is set when all of the port performance register update status bits (BERT PMS) are set. It is an AND of all the BERT port PMU status bits.

Bit 0 : Global Performance Monitoring Update Status (GPMS) This bit is set when all of the port performance register update status bits (PSR:PMU), that are enabled for global update control (PCR2:PMUM=1), are set. It is an AND of all the globally enabled port PMU status bits. In global software update mode, the global update request bit (GCR:GPMU) should be held high until this status bit goes high.

Register Name: GIMR4

Register Description: Global Interrupt Mask Register 4

Address (hex): 1811

Bit #	7	6	5	4	3	2	1	0
Name							BPMS	GPMS
Default	0	0	0	0	0	0	0	0

Bit 7 - 2: Unused. Must be set = 0 for proper operation.

Bit 1 : BERT Performance Monitoring Update Status (BPMS)

0 = interrupt masked1 = interrupt enabled

Bit 0 : Global Performance Monitoring Update Status (GPMS)

0 = interrupt masked

1 = interrupt enabled

11.2 Cell / Packet Register Descriptions

The register descriptions are divided into separate register block sections. Bits that are <u>underlined</u> are read-only; all other bits are read-write. Configuration registers and bits can be written to and read from during a data path reset (LDRST bit = 0), however, all changes to these bits will be ignored during the data path reset. As a result, all bits requiring a 0 to 1 transition to initiate an action must have the transition occur after the data path reset has been removed.

All counters stop counting at their maximum count. A counter register is updated by asserting (low to high transition) the associated performance monitoring update signal (xxPMU). During the counter register update process, the associated performance monitoring status signal (xxPMS) will be deasserted. The counter register update process consists of loading the counter register with the current count, resetting the counter, forcing the zero count status indication low for one clock cycle, and then asserting xxPMS. No events shall be missed during an update procedure.

A latched bit is set when the associated event occurs, and remains set until it is cleared. Once cleared, a latched bit will not be set again until the associated event reoccurs (goes away and comes back). A latched on change bit is a latched bit that is set when the event occurs, and when it goes away. A latched status bit is cleared when the register is selected (register addressed and associated BSxx high), the appropriate byte enable (LBE or UBE) is high, a logic one is present on the corresponding DI[x], and the LSRCK signal goes high.

11.2.1 General Cell / Packet Registers

Table 11-2 General Cell / Packet Register Map

ADDRESS (hex) PORT 1 + 0h PORT 2 + 200h PORT 3 + 400h PORT 4 + 600h	NAME	FUNCTION
1040	-	Unused. Must be set = 0 for proper operation.
1041	CPC1	CELL / PACKET Control 1
1042	CPC2	CELL / PACKET Control 2
1043	-	Unused. Must be set = 0 for proper operation.
1044	-	Unused. Must be set = 0 for proper operation.
1045	CPIS	CELL / PACKET Interrupt Status
1046	CPPMS	CELL / PACKET Performance Monitor Status
1047	-	Unused. Must be set = 0 for proper operation.
1048	-	Unused. Must be set = 0 for proper operation.
1049	-	Unused. Must be set = 0 for proper operation.
104A	CPPMIE	CELL / PACKET Performance Monitor Interrupt Enable
104B – 104F	-	Unused. Must be set = 0 for proper operation.

Register Name: CPC1

Register Description: CELL / PACKET Control 1
Address (hex): 1041, 1241, 1441, 1641

Bit#	7	6	5	4	3	2	1	0
Name	RCDV8		PMCPE	SYSLBK	PMUM	PMU	LDRST	LRST
Default	0	0	0	0	0	0	0	0

Bit 7: Receive ATM Cell Delineation Verify 8 enable (RCDV8) This bit determines the number of good cells required for the ATM cell delineator state machine to transition from the #Verify# state to the #Update# state.

0 = Six valid ATM cells are required (typical for framed cells)

1 = Eight valid ATM cells are required (typical for unframed cells)

Bit 6: Reserved. Must be set to 0 for proper operation.

Bit 5 : POS-PHY Mode Cell Processor Enable (PMCPE) This bit determines the associated transmit and receive port interface processing (cell/packet) to be performed in the POS-PHY mode. It is only active in POS-PHY mode.

0 = Packet processing will be performed

1 = Cell processing will be performed

Bit 4 : System Loopback (SYSLBK) This signal determines if cells/packets for the associated port are looped back to the system interface. When SYSLBK is low, the incoming cells/packets from the transmit FIFO are passed on to transmit cell/packet processor. When SYSLBK is high, the incoming cells/packets from the transmit FIFO are looped back to the receive FIFO. The transmit cell/packet processor outputs idle cells/inter-frame fill. This is an asynchronous signal.

Bit 3: Performance Monitor Update Mode (PMUM) This bit selects the method of updating the performance monitor registers. The global updates are controlled by the GCR2[1] bit.

0 = Port software update

1 = Global update

Bit 2 : Performance Monitor Register Update (PMU) This bit is used to update all of the performance monitor registers configured to use this bit when PCR1:PMUM=0. The performance registers configured to use this signal will be updated when this bit is toggled low to high with the latest count value, and the counters reset. The bit should remain high until the performance register update status bit (PSR:PMS) goes high, then it should be brought back low which clears the PMS status bit.

Bit 1 : (LDRST) When this bit is set, it will force all of the internal data path registers clocked by RSCK and TSCK pins in the corresponding cell / packet interface port to their default state. This bit must be set high for a minimum of 100ns.

0 = Normal operation.

1 = Force all data path registers to their default values.

Bit 0 : (LRST) When this bit is set, all of the internal data path and status and control registers in the cell / packet interface, associated with line, will be reset to their default state for that port. This bit must be set high for a minimum of 100ns.

0 = Normal operation.

1 = Force all internal registers to their default values.

Register Name: CPC2

Register Description: CELL / PACKET Control 2
Address (hex): 1042, 1242, 1442, 1642

Bit#	7	6	5	4	3	2	1	0
Name							TBYT	RBYT
Default	0	0	0	0	0	0	0	0

Bit 1: Transmit Byte Synchronous Mode (TBYT) This signal determines the transmit physical interface bit/byte synchronous mode. When TBYT is high, the transmit physical interface will operate in byte synchronous mode (also known as octet aligned). When TBYT is low, the transmit physical interface will operate in bit synchronous mode.

Bit 0 : Receive Byte Synchronous Mode (RBYT) This signal determines the receive physical interface bit/byte synchronous mode. When RBYT is high, the receive physical interface will operate in byte synchronous mode (also known as octet aligned). When RBYT is low, the receive physical interface will operate in bit synchronous mode.

11.2.2 Cell/Packet Status Registers

Register Name: CPIS

Register Description: CELL / PACKET Interrupt Status

Address (hex): 1045, 1245, 1445, 1645

Bit#	7	6	5	4	3	2	1	0
Name	-	-	-	-	-	SFSR	CPSR	PMS
Default	0	0	0	0	0	0	0	0

Bit 2: System FIFO Status Register Interrupt Status (SFSR) This bit is set when any of the latched status register bits, that are enabled for interrupt, in either the transmit or receive FIFO block are set. The interrupt pin will be driven when this bit is set and the GCR4.GIPI is set to zero. (INTRF[x] || INTTF[x])

Bit 1 : Cell/Packet Status Register Interrupt Status (CPSR) This bit is set when any of the latched status register bits, that are enabled for interrupt, in the active transmit or receive cell processor or packet processor block are set. The interrupt pin will be driven when this bit is set and the GCR4.GIPI is set to zero. (INTRCP[x] || INTTCP[x])

Bit 0 : Performance Monitoring Update Status (PMS) This bit indicates the status of all active performance monitoring register and counter update signals in this port. It is an #AND# of all update status bits and is not set until all performance registers are updated and the counters reset. In software update modes, the update request bit PCR:PMU should be held high until this status bit goes high.

0 = The associated update request signal is low.

1 = The requested performance register updates are all completed.

Register Name: CPPMS

Register Description: CELL / PACKET Performance Monitor Status

Address (hex): 1046, 1246, 1446, 1646

Bit#	7	6	5	4	3	2	1	0
Name	-	-	-	-	-	-	-	PMSL
Default	0	0	0	0	0	0	0	0

Bits 7 - 1: Unused

Bit 0 : Performance Monitoring Update Status Latched (PMSL) This bit will be set when the PISR:PMS status bit changes from low to high. The GSR2:UPIS[x] bit will be set when this bit is set and the PSRIE:PMSIE bit is set and INT pin will be driven low when GCR4.GIPI is also set to zero.

Register Name: CPPMIE

Register Description: CELL / PACKET Performance Monitor Interrupt Enable

Address (hex): 104A, 124A, 144A, 164A

Bit#	7	6	5	4	3	2	1	0
Name	-	-	-	-	-	-	-	PMSIE
Default	0	0	0	0	0	0	0	0

Bits 7 - 1: Unused. Must be set = 0 for proper operation.

Bit 0 : Performance Monitoring Update Latched Status Interrupt Enable (PMSIE) The interrupt pin will be driven when this bit is set and the PSRL:PMSL bit is set and the bit in GCR4.GIPI is set to zero.

11.2.3 Transmit FIFO Registers

Figure 11-1 Transmit FIFO Register Map

ADDRESS (hex) PORT 1 + 0h PORT 2 + 200h PORT 3 + 400h PORT 4 + 600h	NAME	FUNCTION
1180	TFC	Transmit FIFO Control Register
1181	-	Unused. Must be set = 0 for proper operation.
1182	TFLC1	Transmit FIFO Level Control Register 1
1183	TFLC2	Transmit FIFO Level Control Register 2
1184	TFPAC	Transmit FIFO Port Address Control Register
1185	-	Unused. Must be set = 0 for proper operation.
1186	ı	Unused. Must be set = 0 for proper operation.
1187	-	Unused. Must be set = 0 for proper operation.
1188	TFSRL	Transmit FIFO Status Register Latched
1189	-	Unused. Must be set = 0 for proper operation.
118A	TFSRIE	Transmit FIFO Status Register Interrupt Enable
118B – 118F	-	Unused. Must be set = 0 for proper operation.

Register Name: TFC

Register Description: Transmit FIFO Control Register

Address (hex): 1180, 1380, 1580, 1780

Bit#	7	6	5	4	3	2	1	0
Name	-			-				TFRST
Default	0	0	0	0	0	0	0	1

Bits 7 to 1: Unused. Must be set = 0 for proper operation.

Bit 0 : Transmit FIFO Reset (TFRST) – When 0, the Transmit FIFO will resume normal operations, however, data is discarded until a start of packet/cell is received after RAM power-up is completed. When 1, the Transmit FIFO is emptied, any transfer in progress is halted, the FIFO RAM is powered down, the associated TDXA is forced low, and all incoming data is discarded. If the port was selected when the reset was initiated, the port will be deselected, and must be reselected (TEN deasserted with address on TADR or TSX asserted with address on TDAT) before any transfer will occur.

Register Name: TFLC1

Register Description: Transmit FIFO Level Control Register 1

Address (hex): 1182, 1382, 1582, 1782

Bit#	7	6	5	4	3	2	1	0
Name			TFAF5	TFAF4	TFAF3	TFAF2	TFAF1	TFAF0
Default	0	0	0	1	0	0	0	0

Bits 7 to 6: Unused. Must be set = 0 for proper operation.

Bits 5 to 0: Transmit FIFO Almost Full Level (TFAF[5:0]) – In POS-PHY packet processing mode, these six bits indicate the maximum number of four byte groups that can be available in the Transmit FIFO for it to be considered "almost full". E.g., a value of 30 (1Eh) results in the FIFO being "almost full" when it has 120 (78h) bytes or less available. In cell processing mode, TFAE[5:2] are ignored, and TFAE[1:0] indicate the maximum number of cells that can be available in the Transmit FIFO for it to be considered "almost full".

Register Name: TFLC2

Register Description: Transmit FIFO Level Control Register 2

Address (hex): 1183, 1383, 1583, 1783

Bit #	7	6	5	4	3	2	1	0
Name			TFAE5	TFAE4	TFAE3	TFAE2	TFAE1	TFAE0
Default	0	0	0	1	0	0	0	0

Bits 7 to 6: Unused. Must be set = 0 for proper operation.

Bit 5 : Transmit FIFO Almost Empty Level (TFAE[5:0]) – In POS-PHY packet processing mode, these six bits indicate the maximum number of four byte groups that can be stored in the Transmit FIFO for it to be considered "almost empty". E.g., a value of 30 (1Eh) results in the FIFO being "almost empty" when it contains 120 (78h) bytes or less. In cell processing mode, these bits are ignored.

Register Name: TFPAC

Register Description: Transmit FIFO Port Address Control Register

Address (hex): 1184, 1384, 1584, 1784

Bit#	7	6	5	4	3	2	1	0
Name	TPA7	TPA6	TPA5	TPA4	TPA3	TPA2	TPA1	TPA0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Transmit FIFO System Port Address (TPA[7:0]) – These eight bits set the Transmit FIFO system interface port address used to poll the Transmit FIFO for fill status, and select it for data transfer. In Level II mode, bits TPA[7:5] are ignored, and if bits TPA[4:0] are set to a value of 1Fh, the port is disabled.

Register Name: TFSRL

Register Description: Transmit FIFO Status Register Latched

Address (hex): 1188, 1388, 1588, 1788

Bit#	7	6	5	4	3	2	1	0
Name	-	-	-	TFATL	TFSTL	TFITL	TFUL	TFOL
Default	0	0	0	0	0	0	0	0

Bits 7 to 5: Unused.

- **Bit 4 : Transmit FIFO Aborted Transfer Latched (TFATL)** This bit is set when a transfer is aborted. An aborted transfer does not occur in UTOPIA mode. In POS-PHY mode, an aborted transfer occurs when a packet error (a transfer with TERR and TEOP asserted) occurs. An aborted transfer is stored in the transmit FIFO with an abort indication.
- **Bit 3 : Transmit FIFO Short Transfer Latched (TFSTL)** This bit is set when a "short transfer" is received. In UTOPIA mode, a "short transfer" occurs when a start of cell (a transfer with TSOC asserted) occurs before the previous cell transfer has been completed. In POS-PHY mode, a "short transfer" occurs when a start of packet (a transfer with TSOP asserted) occurs after a previous start of packet, but before an end of packet (a transfer with TEOP asserted). In UTOPIA mode, the short transfer data is discarded. In POS-PHY mode, a short transfer is stored in the transmit FIFO with an abort indication.
- **Bit 2 : Transmit FIFO Invalid Transfer Latched (TFITL)** This bit is set when an "invalid transfer" is initiated. In UTOPIA mode, an "invalid transfer" occurs when additional cell data is transferred after the last transfer of a cell and before a transfer with TSOC asserted. In POS-PHY mode, an "invalid transfer" occurs when packet data is transferred after an end of packet, but before a start of packet (this includes another end of packet transfer). The invalid transfer data is discarded.
- Bit 1 : Transmit FIFO Underflow Latched (TFUL) This bit is set when a Transmit FIFO underflow condition occurs. An underflow condition results in a loss of data.
- **Bit 0 : Transmit FIFO Overflow Latched (TFOL)** This bit is set when a Transmit FIFO overflow condition occurs. An overflow condition results in a loss of data.

Register Name: TFSRIE

Register Description: Transmit FIFO Status Register Interrupt Enable

Address (hex): 118A, 138A, 158A, 178A

Bit#	7	6	5	4	3	2	1	0
Name				TFATIE	TFSTIE	TFITIE	TFUIE	TFOIE
Default	0	0	0	0	0	0	0	0

Bits 7 to 5 : Unused. Must be set = 0 for proper operation.

Bit 4 : Transmit FIFO Aborted Transfer Interrupt Enable (TFATIE) – This bit enables an interrupt if the TFATL bit in the TFSRL register is set.

0 = interrupt disabled

1 = interrupt enabled

Bit 3 : Transmit FIFO Short Transfer Interrupt Enable (TFSTIE) – This bit enables an interrupt if the TFSTL bit in the TFSRL register is set.

0 = interrupt disabled

1 = interrupt enabled

Bit 2: Transmit FIFO Invalid Transfer Interrupt Enable (TFITIE) – This bit enables an interrupt if the TFITL bit in the TFSRL register is set.

0 = interrupt disabled

1 = interrupt enabled

Bit 1 : Transmit FIFO Underflow Interrupt Enable (TFUIE) – This bit enables an interrupt if the TFUL bit in the TFSRL register is set.

0 = interrupt disabled

1 = interrupt enabled

Bit 0 : Transmit FIFO Overflow Interrupt Enable (TFOIE) – This bit enables an interrupt if the TFOL bit in the TFSRL register is set.

0 = interrupt disabled

1 = interrupt enabled

11.2.4 Transmit Cell Processor Registers

Table 11-3 Transmit Cell Processor Register Map

ADDRESS (hex) PORT 1 + 0h PORT 2 + 200h PORT 3 + 400h PORT 4 + 600h	NAME	FUNCTION
1100	TCPC1	Transmit Cell Processor Control Register 1
1101	TCPC2	Transmit Cell Processor Control Register 2
1102	-	Unused. Must be set = 0 for proper operation.
1103	-	Unused. Must be set = 0 for proper operation.
1104	TECC1	Transmit Errored Cell Control Register 1
1105	TECC2	Transmit Errored Cell Control Register 2
1106	THMRC	Transmit HEC Error Mask Control Register
1107	-	Unused. Must be set = 0 for proper operation.
1108	THPC1	Transmit Header Pattern Control Register 1
1109	THPC2	Transmit Header Pattern Control Register 2
110A	THPC3	Transmit Header Pattern Control Register 3
110B	THPC4	Transmit Header Pattern Control Register 4
110C	TFPPC	Transmit Fill Cell Payload Pattern Control Register
110D	-	Unused. Must be set = 0 for proper operation.
110E	TCPSR	Transmit Cell Processor Status Register
110F	-	Unused. Must be set = 0 for proper operation.
1110	TCPSRL	Transmit Cell Processor Status Register Latched
1111	-	Unused. Must be set = 0 for proper operation.
1112	TCPSRIE	Transmit Cell Processor Status Register Interrupt Enable
1113	-	Unused. Must be set = 0 for proper operation.
1114	TCCR1	Transmit Cell Count Register 1
1115	TCCR2	Transmit Cell Count Register 2
1116	TCCR3	Transmit Cell Count Register 3
1117-111F	-	Unused. Must be set = 0 for proper operation.

Register Name: TCPC1

Register Description: Transmit Cell Processor Control Register 1

Address (hex): 1100, 1300, 1500, 1700

Bit#	7	6	5	4	3	2	1	0
Name			TFCH	TFCP	THSE	TSD	TBRE	TCCE
Default	0	0	0	0	0	0	0	0

Bits 7& 6 : Unused. Must be set = 0 for proper operation.

- **Bit 5 : Transmit Fill Cell Header Type (TFCH)** When 0, an idle cell header (00 00 00 01h) will be used in fill cells. When 1, a programmable header will be used in fill cells. The setting of this bit does not affect the contents of the cell payload bytes.
- **Bit 4 : Transmit Fill Cell Payload Type (TFCP)** When 0, an idle cell payload byte (6Ah) will be used in each payload byte fill cells. When 1, a programmable cell payload byte will be used in each payload byte fill cells. The setting of this bit does not affect the contents of the cell header bytes.
- **Bit 3 : Transmit Cell Header Scrambling Enable (THSE)** When 0, only the cell payload will be scrambled. When 1, the entire data stream (cell header and payload) is scrambled. This bit is ignored if scrambling is disabled, or DSS scrambling is enabled. When clear channel is enabled, the entire data stream will be scrambled if scrambling is enabled.
- Bit 2: Transmit Scrambling Disable (TSD) When 0, scrambling is performed. When 1, scrambling is disabled.
- **Bit 1 : Transmit Bit Reordering Enable (TBRE)** When 0, bit reordering is disabled (The first bit transmitted is from the MSB of the transmit FIFO byte TFD[7]). When 1, bit reordering is enabled (The first bit transmitted is from the LSB of the transmit FIFO byte TFD[0]).
- Bit 0 : Transmit Clear Channel Enable (TCCE) When 0, cell processing is enabled. When 1, clear channel is enabled, and all cell processing functions except scrambling and bit reordering are disabled.

Register Name: TCPC2

Register Description: Transmit Cell Processor Control Register 2

Address (hex): 1101, 1301, 1501, 1701

Bit#	7	6	5	4	3	2	1	0
Name	SPARE				TDSE	TDHE	THPE	TCPAD
Default	0	0	0	0	0	0	0	0

Bit 7 : Spare Configuration Bit (SPARE) – This bit is a spare configuration bit reserved for future use. It can be written to and read from, however it does not effect the operation of the CELL / PACKET INTERFACE.

Bits 6 to 4 : Unused. Must be set = 0 for proper operation.

- **Bit 3 : Transmit DSS Scrambling Enable (TDSE)** When 0, self-synchronous scrambling is enabled. When 1, DSS scrambling is enabled. This bit is ignored if scrambling is disabled. Note: In byte synchronous and clear channel modes self-synchronous scrambling is enabled regardless of the setting of this bit.
- **Bit 2 : Transmit DQDB HEC Processing Enable (TDHE)** When 0, the HEC is calculated over all four header bytes. When 1, only the last three header bytes are used for HEC calculation.
- **Bit 1 : Transmit HEC Pass-through Enable (THPE)** When 0, the calculated HEC byte will overwrite the HEC byte in the cell. When 1, the HEC byte in the cell is passed through. Note: The calculated HEC is always inserted into cells that are received without a HEC byte.
- Bit 0 : Transmit HEC Coset Polynomial Addition Disable (TCPAD) When 0, the HEC coset polynomial addition is performed prior to inserting the HEC byte. When 1, HEC coset polynomial addition is disabled

Register Name: TECC1

Register Description: Transmit Errored Cell Control Register 1

Address (hex): 1104, 1304, 1504, 1704

Bit #	7	6	5	4	3	2	1	0
Name	TCEN7	TCEN6	TCEN5	TCEN4	TCEN3	TCEN2	TCEN1	TCEN0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Transmit Errored Cell Insertion Number (TCEN[7:0]) — These eight bits indicate the total number of errored cells to be transmitted. A value of FFh results in continuous errored cell insertion at the specified rate.

Register Name: TECC2

Register Description: Transmit Errored Cell Control Register 2

Address (hex): 1105, 1305, 1505, 1705

Bit#	7	6	5	4	3	2	1	0
Name	MEIMS	TCER6	TCER5	TCER4	TCER3	TCER2	TCER1	TCER0
Default	0	0	0	0	0	0	0	0

Bit 7 : Manual Error Insert Mode Select (MEIMS) – When 0, the transmit manual error insertion signal (TMEI) will not cause errors to be inserted. When 1, TMEI will cause an error to be inserted when it transitions from a 0 to a 1. Note: Enabling TMEI does not disable error insertion using TCER[6:0] and TCEN[7:0].

Bits 6 to 0: Transmit Errored Cell Insertion Rate (TCER[6:0]) – These seven bits indicate the rate at which errored cells are to be output. One out of every x * 10^y cells is to be an errored cell. TCER[4:1] is the value x, and TCER[6:4] is the value y which has a maximum value of 6. If TCER[4:1] has a value of 0h errored cell insertion is disabled. If TCER[6:4] has a value of 6xh or 7xh the errored cell rate will be x * 10⁶. A TCER[6:0] value of 01h results in every cell being errored. A TCER[6:0] value of 0Fh results in every 15th cell being errored. A TCER[6:0] value of 11h results in every 10th cell being errored. Errored cell insertion starts when the TECC register is written to with a TCER[4:1] value that is non-zero. If the TECC register is written to during the middle of an errored cell insertion process, the current process is halted, and a new process will be started using the new values of TCER[6:0] and TCEN[7:0]. Errored cell insertion ends when TCEN[7:0] errored cells have been transmitted.

Register Name: THMRC

Register Description: Transmit HEC Error Mask Control Register

Address (hex): 1106, 1306, 1506, 1706

Bit #	7	6	5	4	3	2	1	0
Name	THEM7	THEM6	THEM5	THEM4	THEM3	THEM2	THEM1	THEM0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Transmit HEC Error Mask (THEM[7:0]) – These eight bits indicate whether or not the associated HEC bit is inverted during cell error insertion. If THEM[x] is high, HEC bit x is corrupted during an errored cell. If THEM[x] is low, HEC bit x is passed uncorrupted during an errored cell. If THEM[7:0] is all zeros, error insertion is disabled. The table below indicates the type of error inserted by a specific mask value. Note: If a single bit error is inserted in the HEC, and the far-end has single bit error correction enabled, this will cause the indicated header bit to be corrupted.

Value	Error Type	Bit	Value	Error Type	Bit	Value	Error Type	Bit
01h-02h	HEC	_	03h	Multi	-	04h	HEC	_
05h-06h	Multi	_	07h	Single	32	08h	HEC	_
09h-0Ah	Multi	_	0Bh	Single	09	0Ch-0Dh	Multi	_
0Eh	Single	31	0Fh	Multi	_	10h	HEC	_
11h-14h	Multi	ı	15h	Single	24	16h	Single	80
17h-1Dh	Multi	_	1Eh	Single	30	1Fh	Multi	-
20h	HEC	_	21h-29h	Multi	-	2Ah	Single	23
2Bh	Multi	ı	2Ch	Single	07	2Dh-30h	Multi	-
31h	Single	01	32h-37h	Multi	_	38h	Single	29
39h-3Fh	Multi	_	40h	HEC	-	41h-42h	Multi	-
43h	Single	11	44h-50h	Multi	_	51h	Single	13
52h-53h	Multi	_	54h	Single	22	55h-56h	Multi	_
57h	Single	20	58h	Single	06	59h-5Ah	Multi	-
5Bh	Single	18	5Ch-66h	Multi	_	67h	Single	04
68h-6Ah	Multi	-	6Bh	Single	16	6Ch-6Fh	Multi	-
70h	Single	28	71h-7Fh	Multi	-	80h	HEC	ı
81h-85h	Multi	-	86h	Single	10	87h-88h	Multi	-
89h	Single	25	90h-9Ah	Multi	_	9Bh	Single	02
9Ch-A1h	Multi	-	A2h	Single	12	A3h-A7h	Multi	-
A8h	Single	21	A9h-AAh	Multi	_	ABh	Single	14
ACh-ADh	Multi	_	AEh	Single	19	AFh	Multi	-
B0h	Single	05	B1h-B5h	Multi	_	B6h	Single	17
B7h-C6h	Multi	ı	C7h	Single	26	C8h-CDh	Multi	1
CEh	Single	03	CFh-D5h	Multi	-	D6h	Single	15
D7h-DFh	Multi	ı	E0h	Single	27	E1h-FFh	Multi	1

Transmit Programmable Header Pattern (THP[31:0]) – These thirty-two bits indicate the header bit pattern to be used in the header of fill cells when the TCPC register bit TFCH is set.

Register Name: THPC1

Register Description: Transmit Header Pattern Control Register 1

Address (hex): 1108, 1308, 1508, 1708

Bit#	7	6	5	4	3	2	1	0
Name	THP7	THP6	THP5	THP4	THP3	THP2	THP1	THP0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Transmit Programmable Header Pattern (THP[7:0])

Register Name: THPC2

Register Description: Transmit Header Pattern Control Register 2

Address (hex): 1109, 1309, 1509, 1709

Bit #	7	6	5	4	3	2	1	0
Name	THP15	THP14	THP13	THP12	THP11	THP10	THP9	THP8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Transmit Programmable Header Pattern (THP[15:8])

Register Name: THPC3

Register Description: Transmit Header Pattern Control Register 3

Address (hex): 110A, 130A, 150A, 170A

Bit#	7	6	5	4	3	2	1	0
Name	THP23	THP22	THP21	THP20	THP19	THP18	THP17	THP16
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Transmit Programmable Header Pattern (THP[23:16])

Register Name: THPC4

Register Description: Transmit Header Pattern Control Register 4

Address (hex): 110B, 130B, 150B, 170B

Bit#	7	6	5	4	3	2	1	0
Name	THP31	THP30	THP29	THP28	THP27	THP26	THP25	THP24
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Transmit Programmable Header Pattern (THP[31:24])

Register Name: TFPPC

Register Description: Transmit Fill Cell Payload Pattern Control Register

Address (hex): 110C, 130C, 150C, 170C

Bit #	7	6	5	4	3	2	1	0
Name	TFPP7	TFPP6	TFPP5	TFPP4	TFPP3	TFPP2	TFPP1	TFPP0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Transmit Fill Cell Payload Pattern (TFPP[7:0]) — These eight bits indicate the value to be placed in the payload bytes of the fill cells when the TCPC register bit TFCP is set..

Register Name: TCPSR

Register Description: Transmit Cell Processor Status Register

Address (hex): 110E, 130E, 150E, 170E

Bit#	7	6	5	4	3	2	1	0
Name								<u>TECF</u>
Default	0	0	0	0	0	0	0	0

Bits 7 to 1: Unused.

Bit 0 : Transmit Errored Cell Insertion Finished (TECF) — This bit is set when the number of errored cells indicated by the TCEN[7:0] bits in the TECC register have been transmitted. This bit is cleared when errored cell insertion is disabled, or a new errored cell insertion process is initiated.

Register Name: TCPSRL

Register Description: Transmit Cell Processor Status Register Latched

Address (hex): 1110, 1310, 1510, 1710

Bit #	7	6	5	4	3	2	1	0
Name								TECFL
Default	0	0	0	0	0	0	0	0

Bits 7 to 1: Unused.

Bit 0 : Transmit Errored Cell Insertion Finished Latched (TECFL) – This bit is set when the TECF bit in the TCPSR register transitions from zero to one.

Register Name: TCPSRIE

Register Description: Transmit Cell Processor Status Register Interrupt Enable

Address (hex): 1112, 1312, 1512, 1712

Bit#	7	6	5	4	3	2	1	0
Name								TECFIE
Default	0	0	0	0	0	0	0	0

Bits 7 to 1 : Unused. Must be set = 0 for proper operation.

Bit 0 : Transmit Errored Cell Insertion Finished Interrupt Enable (TECFIE) – This bit enables an interrupt if the TECFL bit in the TCPSRL register is set.

0 = interrupt disabled

1 = interrupt enabled

Transmit Cell Count (TCC[23:0]) – These twenty-four bits indicate the number of cells extracted from the Transmit FIFO and output in the outgoing data stream.

Register Name: TCCR1

Register Description: Transmit Cell Count Register 1

Address (hex): 1114, 1314, 1514, 1714

Bit#	7	6	5	4	3	2	1	0
Name	TCC7	TCC6	TCC5	TCC4	TCC3	TCC2	TCC1	TCC0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Transmit Cell Count (TCC[7:0])

Register Name: TCCR2

Register Description: Transmit Cell Count Register 2

Address (hex): 1115, 1315, 1515, 1715

Bit#	7	6	5	4	3	2	1	0
Name	TCC15	TCC14	TCC13	TCC12	TCC11	TCC10	TCC9	TCC8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Transmit Cell Count (TCC[15:8])

Register Name: TCCR3

Register Description: Transmit Cell Count Register 3

Address (hex): 1116, 1316, 1516, 1716

Bit# 6 5 4 3 0 TCC18 Name TCC23 TCC22 TCC21 TCC20 TCC19 TCC17 TCC16 Default 0

Bits 7 to 0 : Transmit Cell Count (TCC[23:16])

11.2.5 Transmit Packet Processor Registers

Table 11-4 Transmit Packet Processor Register Map

ADDRESS (hex) PORT 1 + 0h PORT 2 + 200h PORT 3 + 400h PORT 4 + 600h	NAME	FUNCTION
1100	-	Unused. Must be set = 0 for proper operation.
1101	TPPC	Transmit Packet Processor Control Register
1102	TIFGC	Transmit Inter-Frame Gapping Control Register
1103	-	Unused. Must be set = 0 for proper operation.
1104	TEPC1	Transmit Errored Packet Control Register 1
1105	TEPC2	Transmit Errored Packet Control Register 2
1106 – 110E	RES	Unused. Must be set = 0 for proper operation.
110F	TPPSR	Transmit Packet Processor Status Register
1110	=	Unused. Must be set = 0 for proper operation.
1111	TPPSRL	Transmit Packet Processor Status Register Latched
1112	-	Unused. Must be set = 0 for proper operation.
1113	TPPSRIE	Transmit Packet Processor Status Register Interrupt Enable
1114	TPCR1	Transmit Packet Count Register 1
1115	TPCR2	Transmit Packet Count Register 2
1116	TPCR3	Transmit Packet Count Register 3
1117	-	Unused. Must be set = 0 for proper operation.
1118	TBCR1	Transmit Byte Count Register 1
1119	TBCR2	Transmit Byte Count Register 2
111A	TBCR3	Transmit Byte Count Register 3
111B	TBCR4	Transmit Byte Count Register 4
111C – 111F	-	Unused. Must be set = 0 for proper operation.

Register Name: TPPC

Register Description: Transmit Packet Processor Control Register

Address (hex): 1101, 1301, 1501, 1701

Bit#	7	6	5	4	3	2	1	0
Name			TFAD	TF16	TIFV	TSD	TBRE	TCCE
Default	0	0	0	0	0	0	0	0

Bits 7 to 6: Unused. Must be set = 0 for proper operation.

Bit 5: Transmit FCS Append Disable (TFAD) – This bit controls whether or not an FCS is appended to the end of each packet. When 0, the calculated FCS bytes are appended to the end of the packet. When 1, the packet is transmitted without an FCS.

Bit 4 : Transmit FCS-16 Enable (TF16) – When 0, the FCS processing uses a 32-bit FCS. When 1, the FCS processing uses a 16-bit FCS

Bit 3: Transmit Bit Synchronous Inter-frame Fill Value (TIFV) — When 0, inter-frame fill is done with the flag sequence (7Eh). When 1, inter-frame fill is done with all '1's. This bit is ignored in byte synchronous mode.

Bit 2: Transmit Scrambling Disable (TSD) - When 0, scrambling is performed. When 1, scrambling is disabled.

Bit 1 : Receive Bit Reordering Enable (RBRE) – When 0, bit reordering is disabled (The first bit transmitted is from the MSB of the transmit FIFO byte TFD[7]). When 1, bit reordering is enabled (The first bit transmitted is from the LSB of the transmit FIFO byte TFD[0]).

Bit 0 : Transmit Clear Channel Enable (TCCE) – When 0, packet processing is enabled. When 1, clear channel is enabled, and all packet-processing functions except scrambling and bit reordering are disabled.

Register Name: TIFGC

Register Description: Transmit Inter-Frame Gapping Control Register

Address (hex): 1102, 1302, 1502, 1702

Bit#	7	6	5	4	3	2	1	0
Name	TIFG7	TIFG6	TIFG5	TIFG4	TIFG3	TIFG2	TIFG1	TIFG0
Default	0	0	0	0	0	0	0	1

Bits 7 to 0: Transmit Inter-Frame Gapping (TIFG[7:0]) — These eight bits indicate the number of additional flags and bytes of inter-frame fill to be inserted between packets. The number of flags and bytes of inter-frame fill between packets will be at least the value of TIFG[7:0] plus 1. Note: If inter-frame fill is set to all 1's, a TFIG value of 2 or 3 will result in a flag, at least two bytes of 1's, and a flag between packets.

Register Name: TEPC1

Register Description: Transmit Errored Packet Control Register 1

Address (hex): 1104, 1304, 1504, 1704

Bit#	7	6	5	4	3	2	1	0
Name	TPEN7	TPEN6	TPEN5	TPEN4	TPEN3	TPEN2	TPEN1	TPEN0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Transmit Errored Packet Insertion Number (TPEN[7:0]) – These eight bits indicate the total number of errored packets to be transmitted. A value of FFh results in continuous errored packet insertion at the specified rate.

Register Name: TEPC2

Register Description: Transmit Errored Packet Control Register 2

Address (hex): 1105, 1305, 1505, 1705

Bit #	7	6	5	4	3	2	1	0
Name	MEIMS	TPER6	TPER5	TPER4	TPER3	TPER2	TPER1	TPER0
Default	0	0	0	0	0	0	0	0

Bit 7 : Manual Error Insert Mode Select (MEIMS) – When 0, the transmit manual error insertion signal (TMEI) will not cause errors to be inserted. When 1, TMEI will cause an error to be inserted when it transitions from a 0 to a 1. Note: Enabling TMEI does not disable error insertion using TCER[6:0] and TCEN[7:0].

Bits 6 to 0 : Transmit Errored Packet Insertion Rate (TPER[6:0]) – These seven bits indicate the rate at which errored packets are to be output. One out of every $x * 10^y$ packets is to be an errored packet. TPER[3:0] is the value x, and TPER[6:4] is the value y which has a maximum value of 6. If TPER[3:0] has a value of 0h errored packet insertion is disabled. If TPER[6:4] has a value of 6xh or 7xh the errored packet rate will be $x * 10^6$. A TPER[6:0] value of 01h results in every packet being errored. A TPER[6:0] value of 0Fh results in every 15th packet being errored. A TPER[6:0] value of 11h result in every 10th packet being errored. Errored packet insertion starts when the TEPC register is written to with a TPER[3:0] value that is non-zero. If the TEPC register is written to during the middle of an errored packet insertion process, the current process is halted, and a new process will be started using the new values of TPER[6:0] and TPEN[7:0]. Errored packet insertion ends when TPEN[7:0] errored packets have been transmitted.

Register Name: TPPSR

Register Description: Transmit Packet Processor Status Register

Address (hex): 110F, 130F, 150F, 170F

Bit#	7	6	5	4	3	2	1	0
Name						-		<u>TEPF</u>
Default	0	0	0	0	0	0	0	0

Bits 7 to 1: Unused.

Bit 0 : Transmit Errored Packet Insertion Finished (TEPF) – This bit is set when the number of errored packets indicated by the TPEN[7:0] bits in the TEPC register have been transmitted. This bit is cleared when errored packet insertion is disabled, or a new errored packet insertion process is initiated.

Register Name: TPPSRL

Register Description: Transmit Packet Processor Status Register Latched

Address (hex): 1111, 1311, 1511, 1711

Bit#	7	6	5	4	3	2	1	0
Name								TEPFL
Default	0	0	0	0	0	0	0	0

Bits 7 to 1: Unused.

Bit 0 : Transmit Errored Packet Insertion Finished Latched (TEPFL) – This bit is set when the TEPF bit in the TPPSR register transitions from zero to one.

Register Name: TPPSRIE

Register Description: Transmit Packet Processor Status Register Interrupt Enable

Address (hex): 1113, 1313, 1513, 1713

Bit#	7	6	5	4	3	2	1	0
Name								TEPFIE
Default	0	0	0	0	0	0	0	0

Bits 7 to 1 : Unused. Must be set = 0 for proper operation.

Bit 0 : Transmit Errored Packet Insertion Finished Interrupt Enable (TEPFIE) – This bit enables an interrupt if the TEPFL bit in the TPPSRL register is set.

0 = interrupt disabled

1 = interrupt enabled

Transmit Packet Count (TPC[23:0]) – These twenty-four bits indicate the number of packets extracted from the Transmit FIFO and output in the outgoing data stream.

Register Name: TPCR1

Register Description: Transmit Packet Count Register 1

Address (hex): 1114, 1314, 1514, 1714

Bit#	7	6	5	4	3	2	1	0
Name	TPC7	TPC6	TPC5	TPC4	TPC3	TPC2	TPC1	TPC0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Transmit Packet Count (TPC[7:0])

Register Name: TPCR2

Register Description: Transmit Packet Count Register 2

Address (hex): 1115, 1315, 1515, 1715

Bit#	7	6	5	4	3	2	1	0
Name	TPC15	TPC14	TPC13	TPC12	TPC11	TPC10	TPC9	TPC8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Transmit Packet Count (TPC[15:8])

Register Name: TPCR3

Register Description: Transmit Packet Count Register 3

Address (hex): 1116, 1316, 1516, 1716

Bit#	7	6	5	4	3	2	1	0
Name	TPC23	TPC22	TPC21	TPC20	TPC19	TPC18	TPC17	TPC16
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Transmit Packet Count (TPC[23:16])

Transmit Byte Count (TBC[31:0]) – These thirty-two bits indicate the number of packet bytes inserted in the outgoing data stream.

Register Name: TBCR1

Register Description: Transmit Byte Count Register 1

Address (hex): 1118, 1318, 1518, 1718

Bit #	7	6	5	4	3	2	1	0
Name	TBC7	TBC6	TBC5	TBC4	TBC3	TBC2	TBC1	TBC0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Transmit Byte Count (TBC[7:0])

Register Name: TBCR2

Register Description: Transmit Byte Count Register 2

Address (hex): 1119, 1319, 1519, 1719

Bit#	7	6	5	4	3	2	1	0
Name	TBC15	TBC14	TBC13	TBC12	TBC11	TBC10	TBC9	TBC8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Transmit Byte Count (TBC[15:8])

Register Name: TBCR3

Register Description: Transmit Byte Count Register 3

Address (hex): 111A, 131A, 151A, 171A

Bit#	7	6	5	4	3	2	1	0
Name	TBC23	TBC22	TBC21	TBC20	TBC19	TBC18	TBC17	TBC16
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Transmit Byte Count (TBC[23:16])

Register Name: TBCR4

Register Description: Transmit Byte Count Register 4

Address (hex): 111B, 131B, 151B, 171B

Bit#	15	14	13	12	11	10	9	8
Name	TBC31	TBC30	TBC29	TBC28	TBC27	TBC26	TBC25	TBC24
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Transmit Byte Count (TBC[31:24])

11.2.6 Receive Cell Processor Registers

Table 11-5 Receive Cell Processor Register Map

ADDRESS (hex) PORT 1 + 0h	NAME	EUNCTION
PORT 2 + 200h PORT 3 + 400h	NAME	FUNCTION
PORT 4 + 600h	50504	
1000	RCPC1	Receive Cell Processor Control Register 1
1001	RCPC2	Receive Cell Processor Control Register 2
1002	-	Unused. Must be set = 0 for proper operation.
1003	-	Unused. Must be set = 0 for proper operation.
1004	RHPC1	Receive Header Pattern Control Register 1
1005	RHPC2	Receive Header Pattern Control Register 2
1006	RHPC3	Receive Header Pattern Control Register 3
1007	RHPC4	Receive Header Pattern Control Register 4
1008	RHPMC1	Receive Header Pattern Mask Control Register 1
1009	RHPMC2	Receive Header Pattern Mask Control Register 2
100A	RHPMC3	Receive Header Pattern Mask Control Register 3
100B	RHPMC4	Receive Header Pattern Mask Control Register 4
100C	RLTC1	Receive LCD Threshold Control Register 1
100D	RLTC2	Receive LCD Threshold Control Register 2
100E	RCPSR1	Receive Cell Processor Status Register 1
100F	RCPSR2	Receive Cell Processor Status Register 2
1010	RCPSRL1	Receive Cell Processor Status Register Latched 1
1011	RCPSRL2	Receive Cell Processor Status Register Latched 2
1012	RCPSRIE1	Receive Cell Processor Register Interrupt Enable 1
1013	RCPSRIE2	Receive Cell Processor Register Interrupt Enable 2
1014	RCCR1	Receive Cell Count Register 1
1015	RCCR2	Receive Cell Count Register 2
1016	RCCR3	Receive Cell Count Register 3
1017	-	Unused. Must be set = 0 for proper operation.
1018	REHCR1	Receive Errored Header Count Register 1
1019	REHCR2	Receive Errored Header Count Register 2
101A	REHCR3	Receive Errored Header Count Register 3
101B	-	Unused. Must be set = 0 for proper operation.
101C	RHPCR1	Receive Header Pattern Cell Count Register 1
101D	RHPCR2	Receive Header Pattern Cell Count Register 2
101E	RHPCR3	Receive Header Pattern Cell Count Register 3
4101F	-	Unused. Must be set = 0 for proper operation.
1020	RCCCR1	Receive Corrected Cell Count Register 1
1021	RCCCR2	Receive Corrected Cell Count Register 2
1022	RCCCR3	Receive Corrected Cell Count Register 3
1023	-	Unused. Must be set = 0 for proper operation.
1024	RFCCR1	Receive Filtered Cell Count Register 1
1025	RFCCR2	Receive Filtered Cell Count Register 2
1026	RFCCR3	Receive Filtered Cell Count Register 3
1027-103F	-	Unused. Must be set = 0 for proper operation.

Register Name: RCPC1

Register Description: Receive Cell Processor Control Register 1

Address (hex): 1000, 1200, 1400, 1600

Bit#	7	6	5	4	3	2	1	0
Name	RROC1	RROC0	RCPAD	RHECD	RHDE	RDD	RBRE	RCCE
Default	0	0	0	0	0	0	0	0

Bit 7 & 6: Receive Error Monitoring Required OK Cells (RROC[1:0]) – These two bits indicate the number of good cells required to transition from the "Detection" state to the "Correction" state.

00 = 1 good cell is required.

01 = 2 good cells are required.

10 = 4 good cells are required.

11 = 8 good cells are required.

Bit 5: Receive HEC Coset Polynomial Addition Disable (RCPAD) – When 0, the HEC coset polynomial addition is performed prior to checking the HEC byte. When 1, HEC coset polynomial addition is disabled

Bit 4 : Receive Header Error Correction Disable (RHECD) – When 0, single bit header error correction is enabled. When 1, header error correction is disabled and all errors are treated as an uncorrectable error.

Bit 3 : Receive Cell Header Descrambling Enable (RHDE) – When 0, only the cell payload will be descrambled. When 1, the entire data stream (cell header and payload) is descrambled. This bit is ignored if descrambling is disabled or DSS descrambling is enabled. When clear channel is enabled, the entire data stream will be descrambled if descrambling is enabled.

Bit 2: Receive Descrambling Disable (RDD) – When 0, descrambling is performed. When 1, descrambling is disabled.

Bit 1: Receive Bit Reordering Enable (RBRE) – When 0, bit reordering is disabled (The first bit received is stored in the MSB of the receive FIFO byte RFD[7]). When 1, bit reordering is enabled (The first bit received is stored in the LSB of the receive FIFO byte RFD[0]).

Bit 0 : Receive Clear Channel Enable (RCCE) – When 0, cell processing is enabled. When 1, clear channel is enabled, and all cell processing functions except descrambling and bit reordering are disabled.

Register Name: RCPC2

Register Description: Receive Cell Processor Control Register 2

Address (hex): 1001, 1201, 1401, 1601

Bit#	7	6	5	4	3	2	1	0
Name	RDDE	RDHE	RECED	RHPM1	RHPM0	RICFD	RUCFE	RICFE
Default	0	0	0	0	0	0	0	0

Bit 7 : Receive DSS Descrambling Enable (RDDE) – When 0, self-synchronous descrambling is enabled. When 1, DSS descrambling is enabled. This bit is ignored if descrambling is disabled. Note: In byte synchronous and clear channel modes self-synchronous descrambling is enabled regardless of the setting of this bit.

Bit 6 : Receive DQDB HEC Processing Enable (RDHE) – When 0, the HEC is calculated over all four header bytes. When 1, only the last three header bytes are used for HEC calculation.

Bit 5: Receive Errored Cell Extraction Disable (RECED) – When 0, errored cells are extracted. When 1, errored cells are passed on.

Bit 4 to 3 : Receive Header Pattern Comparison Mode (RHPM[1:0]) – These two bits control the operation of the header pattern comparison function.

00 = Count match: Cells that match the header pattern are counted.

01 = Count no match - Cells that do not match the header pattern are counted.

10 = Discard match - Cells that match the header pattern are counted and discarded.

11 = Discard no match - Cells that do not match the header pattern are counted and discarded.

Bit 2: Receive Idle Cell Filtering Disable (RICFD) – When 0, idle cells are discarded. When 1, idle cells are passed on.

Bit 1 : Receive Unassigned Cell Filtering Enable (RUCFE) – When 0, unassigned cells are passed on. When 1, unassigned cells are counted and discarded.

Bit 0: Receive Invalid Cell Filtering Enable (RICFE) – When 0, invalid cells are passed on. When 1, invalid cells are discarded.

Receive Header Pattern (RHP[31:0]) – These 32 bits indicate the receive header bit pattern to be detected by the header pattern comparison function.

Register Name: RHPC1

Register Description: Receive Header Pattern Control Register 1

Address (hex): 1004, 1204, 1404, 1604

Bit#	7	6	5	4	3	2	1	0
Name	RHP7	RHP6	RHP5	RHP4	RHP3	RHP2	RHP1	RHP0
Default	0	0	0	0	0	0	0	0

Bit 7 to 0 : Receive Header Pattern (RHP[7:0])

Register Name: RHPC2

Register Description: Receive Header Pattern Control Register 2

Address (hex): 1005, 1205, 1405, 1605

Bit#	7	6	5	4	3	2	1	0
Name	RHP15	RHP14	RHP13	RHP12	RHP11	RHP10	RHP9	RHP8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Header Pattern (RHP[15:8])

Register Name: RHPC3

Register Description: Receive Header Pattern Control Register 3

Address (hex): 1006, 1206, 1406, 1606

Bit#	7	6	5	4	3	2	1	0
Name	RHP23	RHP22	RHP21	RHP20	RHP19	RHP18	RHP17	RHP16
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Header Pattern (RHP[23:16])

Register Name: RHPC4

Register Description: Receive Header Pattern Control Register 4

Address (hex): 1007, 1207, 1407, 1607

Bit #	7	6	5	4	3	2	1	0
Name	RHP31	RHP30	RHP29	RHP28	RHP27	RHP26	RHP25	RHP24
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Header Pattern (RHP[31:24])

Receive Header Pattern Comparison Disable (RHPD[31:0]) – These 32 bits indicate whether or not the associated header bit is checked by the header pattern comparison function. If RHPD[x] is high, the header bit x is ignored during the header pattern comparison (don't care). If RHPD[x] is low, the associated bit in the header must match RHP[x] in the receive header pattern control register RHPC.

Register Name: RHPMC1

Register Description: Receive Header Pattern Mask Control Register 1

Address (hex): 1008, 1208, 1408, 1608

Bit#	7	6	5	4	3	2	1	0
Name	RHPD7	RHPD6	RHPD5	RHPD4	RHPD3	RHPD2	RHPD1	RHPD0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Receive Header Pattern Comparison Disable (RHPD[7:0])

Register Name: RHPMC2

Register Description: Receive Header Pattern Mask Control Register 2

Address (hex): 1009, 1209, 1409, 1609

Bit#	15	14	13	12	11	10	9	8
Name	RHPD15	RHPD14	RHPD13	RHPD12	RHPD11	RHPD10	RHPD9	RHPD8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Header Pattern Comparison Disable (RHPD[15:8])

Register Name: RHPMC3

Register Description: Receive Header Pattern Mask Control Register 3

Address (hex): 100A, 120A, 140A, 160A

Bit #	7	6	5	4	3	2	1	0
Name	RHPD23	RHPD22	RHPD21	RHPD20	RHPD19	RHPD18	RHPD17	RHPD16
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Header Pattern Comparison Disable (RHPD[23:16])

Register Name: RHPMC4

Register Description: Receive Header Pattern Mask Control Register 4

Address (hex): 100B, 120B, 140B, 160B

Bit#	15	14	13	12	11	10	9	8
Name	RHPD31	RHPD30	RHPD29	RHPD28	RHPD27	RHPD26	RHPD25	RHPD24
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Receive Header Pattern Comparison Disable (RHPD[31:24])

Register Name: RLTC1

Register Description: Receive LCD Threshold Control Register1

Address (hex): 100C, 120C, 140C, 160C

Bit#	7	6	5	4	3	2	1	0
Name	RLT7	RLT6	RLT5	RLT4	RLT3	RLT2	RLT1	RLT0
Default	0	1	1	0	1	0	0	0

Bits 7 to 0 : Receive LCD Threshold (RLT[7:0]) – These sixteen bits indicate the number of consecutive cell periods the cell delineation state machine must be in an Out of Cell Delineation (OCD) condition before it declares or terminate a Loss of Cell Delineation (LCD) condition. A value of 0000h causes LCD to be declared at the same time as OCD.

Register Name: RLTC2

Register Description: Receive LCD Threshold Control Register2

Address (hex): 100D, 120D, 140D, 160D

Bit#	7	6	5	4	3	2	1	0
Name	RLT15	RLT14	RLT13	RLT12	RLT11	RLT10	RLT9	RLT8
Default	0	0	0	0	0	0	0	1

Bits 7 to 0 : Receive LCD Threshold (RLT[15:8]) — These sixteen bits indicate the number of consecutive cell periods the cell delineation state machine must be in an Out of Cell Delineation (OCD) condition before it declares or terminate a Loss of Cell Delineation (LCD) condition. A value of 0000h causes LCD to be declared at the same time as OCD.

Register Name: RCPSR1

Register Description: Receive Cell Processor Status Register1

Address (hex): 100E, 120E, 140E, 160E

Bit#	7	6	5	4	3	2	1	0
Name						RECC	RHPC	RCHC
Default	0	0	0	0	0	0	0	0

Bits 7 to 3: Unused.

Bit 2: Receive Errored Header Cell Count (RECC) – This read only bit indicates that the receive errored header cell count is non-zero.

Bit 1 : Receive Header Pattern Cell Count (RHPC) – This read only bit indicates that the receive header pattern comparison cell count is non-zero.

Bit 0 : Receive Corrected Cell Count (RCHC) – This read only bit indicates that the receive corrected header cell count is non-zero.

Register Name: RCPSR2

Register Description: Receive Cell Processor Status Register2

Address (hex): 100F, 120F, 140F, 160F

Bit#	7	6	5	4	3	2	1	0
Name	SPR				oos		OCD	LCD
Default	0	0	0	0	0	0	1	0

Bit 7: Spare Status Bit (SPR) – This bit is a spare status bit reserved for future use. It indicates the current value of the RCPC2.SPARE bit.

Bits 6 to 4: Unused.

Bit 3 : Out Of Sync (OOS) – This read only bit indicates that a DSS Out Of Sync (OOS) state exists. DSS OOS occurs when the DSS Scrambler Synchronization state machine is in the "Load" or "Verify" state, and DSS scrambling has been enabled.

Bit 2: Unused.

Bit 1 : Out Of Cell Delineation (OCD) – This read only bit indicates that an Out of Cell Delineation condition (OCD) exists. When DSS scrambling is disabled, OCD occurs when the HEC Error Monitoring state machine is in the "OCD" state. When DSS scrambling is enabled, OCD occurs when the DSS OCD Detection state machine is in the "OCD" state.

Bit 0 : Loss Of Cell Delineation (LCD) – This read only bit indicate that a Loss of Cell Delineation state exists. LCD occurs when OCD persists for the period programmed in the LCD threshold control register RLTC.

Register Name: RCPSRL1

Register Description: Receive Cell Processor Status Register Latched 1

Address (hex): 1010, 1210, 1410, 1610

Bit#	7	6	5	4	3	2	1	0
Name	RECL	RCHL	RIDL	RUDL	RIVDL	RECCL	RHPCL	RCHCL
Default	0	0	0	0	0	0	0	0

Bit 7: Receive Errored Header Cell Latched (RECL) – This bit is set when a cell with an errored header is discarded.

Bit 6: Receive Corrected Header Cell Latched (RCHL) – This bit is set when a cell with a single header error is corrected.

Bit 5: Receive Idle Cell Detection Latched (RIDL) – This bit is set when an idle cell is discarded.

Bit 4: Receive Unassigned Cell Detection Latched (RUDL) – This bit is set when an unassigned cell is discarded.

Bit 3: Receive Invalid Cell Detection Latched (RIVDL) - This bit is set when an invalid cell is discarded.

Bit 2: Receive Errored Header Cell Count Latched (RECCL) – This bit is set when the RECC bit in the RCPSR register transitions from zero to one.

Bit 1: Receive Header Pattern Cell Count Latched (RHPCL) – This bit is set when the RHPC bit in the RCPSR register transitions from zero to one.

Bit 0 : Receive Corrected Header Cell Count Latched (RCHCL) – This bit is set when the RCHC bit in the RCPSR register transitions from zero to one.

Register Name: RCPSRL2

Register Description: Receive Cell Processor Status Register Latched 2

Address (hex): 1011, 1211, 1411, 1611

Bit#	7	6	5	4	3	2	1	0
Name	SPRL				OOSL	COCDL	OCDCL	LCDCL
Default	0	0	0	0	0	0	0	0

Bit 7: Spare Change Latched (SPRL) – This bit is set when the SPR bit changes state.

Bits 6 to 4: Unused

Bit 3: Out Of Sync Change Latched (OOSL) – This bit is set when the OOS bit in the RCPSR2 register changes state.

Bit 2 : Change Of Cell Delineation Latched (COCDL) – This bit is set when the data path cell counters are updated with a new cell delineation that is different from the previous cell delineation.

Bit 1 : Out Of Cell Delineation Change Latched (OCDCL) – This bit is set when the OCD bit in the RCPSR2 register changes state. Note: Immediately after a reset, this bit will be set to one.

Bit 0 : Loss Of Cell Delineation Change Latched (LCDCL) – This bit is set when the LCD bit in the RCPSR2 register changes state

Register Name: RCPSRIE

Register Description: Receive Cell Processor Register Interrupt Enable

Address (hex): 1012, 1212, 1412, 1612

Bit#	7	6	5	4	3	2	1	0
Name	RECIE	RCHIE	RIDIE	RUDIE	RIVDIE	RECCIE	RHPCIE	RCHCIE
Default	0	0	0	0	0	0	0	0

Bit 7 : Receive Errored Header Cell Interrupt Enable (RECIE) – This bit enables an interrupt if the RECL bit in the RCPSRL register is set.

0 = interrupt disabled

1 = interrupt enabled

Bit 6 : Receive Corrected Header Cell Interrupt Enable (RCHIE) – This bit enables an interrupt if the RCHL bit in the RCPSRL register is set.

0 = interrupt disabled

1 = interrupt enabled

Bit 5 : Receive Idle Cell Detection Interrupt Enable (RIDIE) – This bit enables an interrupt if the RIDL bit in the RCPSRL register is set.

0 = interrupt disabled

1 = interrupt enabled

Bit 4 : Receive Unassigned Cell Detection Interrupt Enable (RUDIE) – This bit enables an interrupt if the RUDL bit in the RCPSRL register is set.

0 = interrupt disabled

1 = interrupt enabled

Bit 3 : Receive Invalid Cell Detection Interrupt Enable (RIVDIE) – This bit enables an interrupt if the RIVDL bit in the RCPSRL register is set.

0 = interrupt disabled

1 = interrupt enabled

Bit 2 : Receive Errored Header Cell Count Interrupt Enable (RECCIE) – This bit enables an interrupt if the RECCL bit in the RCPSRL register is set.

0 = interrupt disabled

1 = interrupt enabled

Bit 1 : Receive Header Pattern Cell Count Interrupt Enable (RHPCIE) – This bit enables an interrupt if the RHFCL bit in the RCPSRL register is set.

0 = interrupt disabled

1 = interrupt enabled

Bit 0 : Receive Corrected Header Cell Count Interrupt Enable (RCHCIE) — This bit enables an interrupt if the RCHCL bit in the RCPSRL register is set.

0 = interrupt disabled

1 = interrupt enabled

Register Name: RCPSRIE

Register Description: Receive Cell Processor Register Interrupt Enable

Address (hex): 1013, 1213, 1413, 1613

Bit#	7	6	5	4	3	2	1	0
Name	SPRIE				OOSIE	COCDIE	OCDCIE	LCDCIE
Default	0	0	0	0	0	0	0	0

Bit 7: Spare Change Interrupt Enable (SPRIE) - This bit enables an interrupt if the SPRL bit is set.

0 = interrupt disabled

1 = interrupt enabled

Bits 6 to 4 : Unused. Must be set = 0 for proper operation.

Bit 3 : Out Of Sync Change Interrupt Enable (OOSIE) – This bit enables an interrupt if the OOSL bit in the RCPSRL register is set.

0 = interrupt disabled

1 = interrupt enabled

Bit 2: Change Of Cell Delineation Interrupt Enable (COCDIE) – This bit enables an interrupt if the COCDL bit in the RCPSRL register is set.

0 = interrupt disabled

1 = interrupt enabled

Bit 1 : Out Of Cell Delineation Change Interrupt Enable (OCDCIE) – This bit enables an interrupt if the OCDCL bit in the RCPSRL register is set.

0 = interrupt disabled

1 = interrupt enabled

Bit 0 : Loss Of Cell Delineation Change Interrupt Enable (LCDCIE) – This bit enables an interrupt if the LCDCL bit in the RCPSRL register is set.

0 = interrupt disabled

1 = interrupt enabled

Receive Cell Count (RCC[23:0]) – These twenty-four bits indicate the number of cells stored in the receive FIFO. Note: Cells discarded due to system loopback or an overflow condition will be included in this count.

Register Name: RCCR1

Register Description: Receive Cell Count Register 1

Address (hex): 1014, 1214, 1414, 1614

Bit#	7	6	5	4	3	2	1	0
Name	RCC7	RCC6	RCC5	RCC4	RCC3	RCC2	RCC1	RCC0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Cell Count (RCC[7:0])

Register Name: RCCR2

Register Description: Receive Cell Count Register 2

Address (hex): 1015, 1215, 1415, 1615

Bit#	15	14	13	12	11	10	9	8
Name	RCC15	RCC14	RCC13	RCC12	RCC11	RCC10	RCC9	RCC8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Cell Count (RCC[15:8])

Register Name: RCCR3

Register Description: Receive Cell Count Register 3

Address (hex): 1016, 1216, 1416, 1616

Bit#	7	6	5	4	3	2	1	0
Name	RCC23	RCC22	RCC21	RCC20	RCC19	RCC18	RCC17	RCC16
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Cell Count (RCC[23:16])

Receive Errored Header Count (RECC[23:0]) – These twenty-four bits indicate the number of cells received with uncorrected header errors and discarded. If errored cell extraction is disabled, this count will be zero. Cells included in this count will not be included in any other count.

Register Name: REHCR1

Register Description: Receive Errored Header Count Register 1

Address (hex): 1018, 1218, 1418, 1618

Bit#	7	6	5	4	3	2	1	0
Name	RECC7	RECC6	RECC5	RECC4	RECC3	RECC2	RECC1	RECC0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Errored Header Count (RECC[7:0])

Register Name: REHCR2

Register Description: Receive Errored Header Count Register 2

Address (hex): 1019, 1219, 1419, 1619

Bit#	7	6	5	4	3	2	1	0
Name	RECC15	RECC14	RECC13	RECC12	RECC11	RECC10	RECC9	RECC8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Errored Header Count (RECC[15:8])

Register Name: REHCR3

Register Description: Receive Errored Header Count Register 3

Address (hex): 101A, 121A, 141A, 161A

Bit#	7	6	5	4	3	2	1	0
Name	RECC23	RECC22	RECC21	RECC20	RECC19	RECC18	RECC17	RECC16
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Errored Header Count (RECC[23:16])

Receive Header Pattern Comparison Cell Count (RHPC[23:0]) – These twenty-four bits indicate the number of cells identified during the header pattern comparison processes. In the header pattern comparison count and discard match modes, this will be a count of cells with a matching header. In the header pattern comparison count and discard no match modes, this will be a count of cells without a matching header. In the header pattern comparison count (match or no match) modes, this count will also be included in the receive cell count register (RCCR). In the header pattern comparison discard (match or no match) modes, this count will not be included in any other count.

Register Name: RHPCR1

Register Description: Receive Header Pattern Cell Count Register #1

Address (hex): 101C, 121C, 141C, 161C

Bit # 7 6 5 3 2 0 4 1 Name RHPC7 RHPC6 RHPC5 RHPC4 RHPC3 RHPC2 RHPC1 RHPC0 0 0 Default 0 0 0 0 0 0

Bits 7 to 0 : Receive Header Pattern Comparison Cell Count (RHPC[7:0])

Register Name: RHPCR2

Register Description: Receive Header Pattern Cell Count Register 2

Address (hex): 101D, 121D, 141D, 161D

Bit# 6 5 3 0 RHPC14 RHPC13 RHPC12 RHPC11 RHPC10 RHPC9 RHPC8 RHPC15 Name Default 0 O 0 0 0 0 O 0

Bits 7 to 0 : Receive Header Pattern Comparison Cell Count (RHPC[15:8])

Register Name: RHPCR3

Register Description: Receive Header Pattern Cell Count Register 3

Address (hex): 101E, 121E, 141E, 161E

Bit # 7 6 5 4 3 2 0 RHPC21 RHPC23 RHPC22 RHPC20 RHPC19 RHPC18 RHPC17 RHPC16 Name Default 0 0 0 0 0

Bits 7 to 0: Receive Header Pattern Comparison Cell Count (RHPC[23:16])

Receive Corrected Header Count (RCHC[23:0]) – These twenty-four bits indicate the number of cells that have had header errors corrected. If header error correction is disabled, this count will be zero. This count will be included in the receive cell count register (RCCR), receive filtered idle/unassigned/invalid cell count register (RFCCR), or receive header pattern cell count register (RHPCR).

Register Name: RCCCR1

Register Description: Receive Corrected Cell Count Register #1

Address (hex): 1020, 1220, 1420, 1620

Bit#	7	6	5	4	3	2	1	0
Name	RCHC7	RCHC6	RCHC5	RCHC4	RCHC3	RCHC2	RCHC1	RCHC0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Corrected Header Count (RCHC[15:0])

Register Name: RCCCR2

Register Description: Receive Corrected Cell Count Register 2

Address (hex): 1021, 1221, 1421, 1621

Bit#	15	14	13	12	11	10	9	8
Name	RCHC15	RCHC14	RCHC13	RCHC12	RCHC11	RCHC10	RCHC9	RCHC8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Corrected Header Count (RCHC[15:0])

Register Name: RCCCR3

Register Description: Receive Corrected Cell Count Register 3

Address (hex): 1022, 1222, 1422, 1622

Bit #	7	6	5	4	3	2	1	0
Name	RCHC23	RCHC22	RCHC21	RCHC20	RCHC19	RCHC18	RCHC17	RCHC16
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Corrected Header Count (RCHC[23:16])

Receive Filtered Cell Count (RFCC[23:0]) — These twenty-four bits indicate the number of cells that were discarded during the cell filtering processes (idle, unassigned, and/or invalid). If all cell filtering is disabled, this count will be zero. Cells included in this count will not be included in any other count.

Register Name: RFCCR1

Register Description: Receive Filtered Idle/Unassigned/Invalid Cell Count Register 1

Address (hex): 1024, 1224, 1424, 1624

2 Bit# 7 6 5 3 0 RFCC7 RFCC6 RFCC5 RFCC4 RFCC3 RFCC2 RFCC1 RFCC0 Name Default 0 0 0 0 0 0 0 0

Bits 7 to 0 : Receive Filtered Cell Count (RFCC[7:0])

Register Name: RFCCR2

Register Description: Receive Filtered Idle/Unassigned/Invalid Cell Count Register 2

Address (hex): 1025, 1225, 1425, 1625

Bit# 6 0 RFCC15 RFCC14 RFCC13 RFCC12 RFCC11 RFCC10 RFCC9 RFCC8 Name Default 0 0 0 0 0 0 0 0

Bits 7 to 0 : Receive Filtered Cell Count (RFCC[15:8])

Register Name: RFCCR3

Register Description: Receive Filtered Idle/Unassigned/Invalid Cell Count Register 3

Address (hex): 1026, 1226, 1426, 1626

Bit# 7 5 4 3 2 0 6 RFCC23 RFCC22 RFCC21 RFCC20 RFCC19 RFCC18 RFCC17 Name RFCC16 Default 0 0 0 0 0 0

Bits 7 to 0 : Receive Filtered Cell Count (RFCC[23:16])

11.2.7 Receive Packet Processor Registers

Table 11-6 Receive Packet Processor Register Map

ADDRESS (hex) PORT 1 + 0h PORT 2 + 200h PORT 3 + 400h PORT 4 + 600h	NAME	FUNCTION
1000	RPPC1	Receive Packet Processor Control Register 1
1001	RPPC2	Receive Packet Processor Control Register 2
1002	RMPSC1	Receive Maximum Packet Size Control Register 1
1003	RMPSC2	Receive Maximum Packet Size Control Register 2
1004 – 100E	-	Unused. Must be set = 0 for proper operation.
100F	RPPSR	Receive Packet Processor Status Register
1010	_	Unused. Must be set = 0 for proper operation.
1011	RPPSRL	Receive Packet Processor Status Register Latched
1012	-	Unused. Must be set = 0 for proper operation.
1013	RPPSRIE	Receive Packet Processor Status Register Interrupt Enable
1014	RPCR1	Receive Packet Count Register 1
1015	RPCR2	Receive Packet Count Register 2
1016	RPCR3	Receive Packet Count Register 3
1017	-	Unused. Must be set = 0 for proper operation.
1018	RFPCR1	Receive FCS Errored Packet Count Register 1
1019	RFPCR2	Receive FCS Errored Packet Count Register 2
101A	RFPCR3	Receive FCS Errored Packet Count Register 3
101B	-	Unused. Must be set = 0 for proper operation.
101C	RAPCR1	Receive Aborted Packet Count Register 1
101D	RAPCR2	Receive Aborted Packet Count Register 2
101E	RAPCR3	Receive Aborted Packet Count Register 3
101F	-	Unused. Must be set = 0 for proper operation.
1020	RSPCR1	Receive Size Violation Packet Count Register 1
1021	RSPCR2	Receive Size Violation Packet Count Register 2
1022	RSPCR3	Receive Size Violation Packet Count Register 3
1023 - 1027	-	Unused. Must be set = 0 for proper operation.
1028	RBCR1	Receive Byte Count Register 1
1029	RBCR2	Receive Byte Count Register 2
102A	RBCR3	Receive Byte Count Register 3
102B	RBCR4	Receive Byte Count Register 4
102C	RABCR1	Receive Aborted Byte Count Register 1
102D	RABCR2	Receive Aborted Byte Count Register 2
102E	RABCR3	Receive Aborted Byte Count Register 3
102F	RABCR4	Receive Aborted Byte Count Register 4
1030 – 103F		Unused. Must be set = 0 for proper operation.

Register Name: RPPC1

Register Description: Receive Packet Processor Control Register 1

Address (hex): 1000, 1200, 1400, 1600

Bit#	7	6	5	4	3	2	1	0
Name	SPARE	-	RFPD	RF16	RFED	RDD	RBRE	RCCE
Default	0	0	0	0	0	0	0	0

Bit 7: Spare Configuration Bit (SPARE) – This bit is a spare configuration bit reserved for future use. It can be written to and read from, however it does not effect the operation of the CELL / PACKET INTERFACE.

Bit 6 : Unused. Must be set = 0 for proper operation.

Bit 5 : Receive FCS Processing Disable (RFPD) – When 0, FCS processing is performed (the packets have an FCS appended). When 1, FCS processing is disabled (the packets do not have an FCS appended).

Bit 4 : Receive FCS-16 Enable (RF16) – When 0, the error checking circuit uses a 32-bit FCS. When 1, the error checking circuit uses a 16-bit FCS. This bit is ignored when FCS processing is disabled.

Bit 3 : Receive FCS Extraction Disable (RFED) – When 0, the FCS bytes are discarded. When 1, the FCS bytes are passed on. This bit is ignored when FCS processing is disabled.

Bit 2: Receive Descrambling Disable (RDD) – When 0, descrambling is performed. When 1, descrambling is disabled.

Bit 1 : Receive Bit Reordering Enable (RBRE) – When 0, bit reordering is disabled (The first bit received is stored in the MSB of the receive FIFO byte RFD[7]). When 1, bit reordering is enabled (The first bit received is stored in the LSB of the receive FIFO byte RFD[0]).

Bit 0 : Receive Clear Channel Enable (RCCE) – When 0, packet processing is enabled. When 1, clear channel is enabled, and all packet-processing functions except descrambling and bit reordering are disabled.

Register Name: RPPC2

Register Description: Receive Packet Processor Control Register 2

Address (hex): 1001, 1201, 1401, 1601

Bit#	7	6	5	4	3	2	1	0
Name	RMNS7	RMNS6	RMNS5	RMNS4	RMNS3	RMNS2	RMNS1	RMNS0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Minimum Packet Size (RMNS[7:0]) – These eight bits indicate the minimum allowable packet size in bytes. The size includes the FCS bytes, but excludes bit/byte stuffing. Note: In FCS-32 mode, packets with six bytes are the minimum packet size allowed. In FCS-16 mode, packets with four bytes are the minimum packet size allowed. When FCS processing is disabled, packets with two bytes are the minimum packet size allowed.

Register Name: RMPSC1

Register Description: Receive Maximum Packet Size Control Register 1

Address (hex): 1002, 1202, 1402, 1602

Bit#	7	6	5	4	3	2	1	0
Name	RMX7	RMX6	RMX5	RMX4	RMX3	RMX2	RMX1	RMX0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Maximum Packet Size (RMX[7:0]) – These sixteen bits indicate the maximum allowable packet size in bytes. The size includes the FCS bytes, but excludes bit/byte stuffing. Note: If the maximum packet length is less than the minimum packet length, all packets will be discarded. When packet processing is disabled, these sixteen bits indicate the "packet" size the incoming data is to be broken into.

Register Name: RMPSC2

Register Description: Receive Maximum Packet Size Control Register 2

Address (hex): 1003, 1203, 1403, 1603

Bit#	7	6	5	4	3	2	1	0
Name	RMX15	RMX14	RMX13	RMX12	RMX11	RMX10	RMX9	RMX8
Default	0	0	0	0	0	1	1	0

Bits 7 to 0 : Receive Maximum Packet Size (RMX[15:8]) — These sixteen bits indicate the maximum allowable packet size in bytes. The size includes the FCS bytes, but excludes bit/byte stuffing. Note: If the maximum packet length is less than the minimum packet length, all packets will be discarded. When packet processing is disabled, these sixteen bits indicate the "packet" size the incoming data is to be broken into.

Register Name: RPPSR

Register Description: Receive Packet Processor Status Register

Address (hex): 100F, 120F, 140F, 160F

Bit#	7	6	5	4	3	2	1	0
Name						REPC	RAPC	RSPC
Default	0	0	0	0	0	0	0	0

Bits 7 to 3: Unused.

Bit 2: Receive FCS Errored Packet Count (REPC) – This read only bit indicates that the receive FCS errored packet count is non-zero.

Bit 1 : Receive Aborted Packet Count (RAPC) – This read only bit indicates that the receive aborted packet count is non-zero.

Bit 0 : Receive Size Violation Packet Count (RSPC) — This read only bit indicates that the receive size violation packet count is non-zero.

Register Name: RPPSRL

Register Description: Receive Packet Processor Status Register Latched

Address (hex): 1011, 1211, 1411, 1611

Bit #	7	6	5	4	3	2	1	0
Name	REPL	RAPL	RIPDL	RSPDL	RLPDL	REPCL	RAPCL	RSPCL
Default	0	0	0	0	0	0	0	0

Bit 7: Receive FCS Errored Packet Latched (REPL) – This bit is set when a packet with an errored FCS is detected.

Bit 6: Receive Aborted Packet Latched (RAPL) – This bit is set when a packet with an abort indication is detected.

Bit 5: Receive Invalid Packet Detected Latched (RIPDL) – This bit is set when a packet with a non-integer number of bytes is detected.

Bit 4: Receive Small Packet Detected Latched (RSPDL) – This bit is set when a packet smaller than the minimum packet size is detected.

Bit 3: Receive Large Packet Detected Latched (RLPDL) – This bit is set when a packet larger than the maximum packet size is detected.

Bit 2 : Receive FCS Errored Packet Count Latched (REPCL) – This bit is set when the REPC bit in the RPPSR register transitions from zero to one.

Bit 1 : Receive Aborted Packet Count Latched (RAPCL) – This bit is set when the RAPC bit in the RPPSR register transitions from zero to one.

Bit 0 : Receive Size Violation Packet Count Latched (RSPCL) – This bit is set when the RSPC bit in the RPPSR register transitions from zero to one.

Register Name: RPPSRIE

Register Description: Receive Packet Processor Status Register Interrupt Enable

Address (hex): 1013, 1213, 1413, 1613

Bit#	7	6	5	4	3	2	1	0
Name	REPIE	RAPIE	RIPDIE	RSPDIE	RLPDIE	REPCIE	RAPCIE	RSPCIE
Default	0	0	0	0	0	0	0	0

- Bit 7: Receive FCS Errored Packet Interrupt Enable (REPIE) This bit enables an interrupt if the REPL bit in the RPPSRL register is set.
 - 0 = interrupt disabled
 - 1 = interrupt enabled
- Bit 6 : Receive Aborted Packet Interrupt Enable (RAPIE) This bit enables an interrupt if the RAPL bit in the RPPSRL register is set.
 - 0 = interrupt disabled
 - 1 = interrupt enabled
- Bit 5 : Receive Invalid Packet Detected Interrupt Enable (RIPDIE) This bit enables an interrupt if the RIPDL bit in the RPPSRL register is set.
 - 0 = interrupt disabled
 - 1 = interrupt enabled
- Bit 4: Receive Small Packet Detected Interrupt Enable (RSPDIE) This bit enables an interrupt if the RSPDL bit in the RPPSRL register is set.
 - 0 = interrupt disabled
 - 1 = interrupt enabled
- Bit 3 : Receive Large Packet Detected Interrupt Enable (RLPDIE) This bit enables an interrupt if the RLPDL bit in the RPPSRL register is set.
 - 0 = interrupt disabled
 - 1 = interrupt enabled
- **Bit 2 : Receive FCS Errored Packet Count Interrupt Enable (REPCIE)** This bit enables an interrupt if the REPCL bit in the RPPSRL register is set. Must be set low when the packets do not have an FCS appended.
 - 0 = interrupt disabled
 - 1 = interrupt enabled
- Bit 1 : Receive Aborted Packet Count Interrupt Enable (RAPCIE) This bit enables an interrupt if the RAPCL bit in the RPPSRL register is set.
 - 0 = interrupt disabled
 - 1 = interrupt enabled
- **Bit 0 : Receive Size Violation Packet Count Interrupt Enable (RSPCIE)** This bit enables an interrupt if the RSPCL bit in the RPPSRL register is set.
 - 0 = interrupt disabled
 - 1 = interrupt enabled

Receive Packet Count (RPC[23:0]) – These twenty-four bits indicate the number of packets stored in the receive FIFO without an abort indication. Note: Packets discarded due to system loopback or an overflow condition will be included in this count.

Register Name: RPCR1

Register Description: Receive Packet Count Register 1

Address (hex): 1014, 1214, 1414, 1614

Bit#	7	6	5	4	3	2	1	0
Name	RPC7	RPC6	RPC5	RPC4	RPC3	RPC2	RPC1	RPC0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Packet Count (RPC[7:0])

Register Name: RPCR2

Register Description: Receive Packet Count Register 2

Address (hex): 1015, 1215, 1415, 1615

Bit#	7	6	5	4	3	2	1	0
Name	RPC15	RPC14	RPC13	RPC12	RPC11	RPC10	RPC9	RPC8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Packet Count (RPC[15:8])

Register Name: RPCR3

Register Description: Receive Packet Count Register 3

Address (hex): 1016, 1216, 1416, 1616

Bit #	7	6	5	4	3	2	1	0
Name	RPC23	RPC22	RPC21	RPC20	RPC19	RPC18	RPC17	RPC16
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Packet Count (RPC[23:16])

Receive FCS Errored Packet Count (RFPC[23:0]) – These twenty-four bits indicate the number of packets received with an FCS error. The byte count for these packets is included in the receive aborted byte count register REBCR.

Register Name: RFPCR1

Register Description: Receive FCS Errored Packet Count Register 1

Address (hex): 1018, 1218, 1418, 1618

Bit#	7	6	5	4	3	2	1	0
Name	RFPC7	RFPC6	RFPC5	RFPC4	RFPC3	RFPC2	RFPC1	RFPC0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive FCS Errored Packet Count (RFPC[7:0])

Register Name: RFPCR2

Register Description: Receive FCS Errored Packet Count Register 2

Address (hex): 1019, 1219, 1419, 1619

Bit#	7	6	5	4	3	2	1	0
Name	RFPC15	RFPC14	RFPC13	RFPC12	RFPC11	RFPC10	RFPC9	RFPC8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive FCS Errored Packet Count (RFPC[15:8])

Register Name: RFPCR3

Register Description: Receive FCS Errored Packet Count Register 3

Address (hex): 1020, 1220, 1420, 1620

Bit#	7	6	5	4	3	2	1	0
Name	RFPC23	RFPC22	RFPC21	RFPC20	RFPC19	RFPC18	RFPC17	RFPC16
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive FCS Errored Packet Count (RFPC[23:16])

Receive Aborted Packet Count (RAPC[23:0]) – These twenty-four bits indicate the number of packets received with a packet abort indication. The byte count for these packets is included in the receive aborted byte count register REBCR.

Register Name: RAPCR1

Register Description: Receive Aborted Packet Count Register 1

Address (hex): 101C, 121C, 141C, 161C

Bit #	7	6	5	4	3	2	1	0
Name	RAPC7	RAPC6	RAPC5	RAPC4	RAPC3	RAPC2	RAPC1	RAPC0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Aborted Packet Count (RAPC[7:0])

Register Name: RAPCR2

Register Description: Receive Aborted Packet Count Register 2

Address (hex): 101D, 121D, 141D, 161D

Bit#	7	6	5	4	3	2	1	0
Name	RAPC15	RAPC14	RAPC13	RAPC12	RAPC11	RAPC10	RAPC9	RAPC8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Aborted Packet Count (RAPC[15:8])

Register Name: RAPCR3

Register Description: Receive Aborted Packet Count Register 3

Address (hex): 101E, 121E, 141E, 161E

Bit #	7	6	5	4	3	2	1	0
Name	RAPC23	RAPC22	RAPC21	RAPC20	RAPC19	RAPC18	RAPC17	RAPC16
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Aborted Packet Count (RAPC[23:16])

Receive Size Violation Packet Count (RSPC[23:0]) — These twenty-four bits indicate the number of packets received with a packet size violation (below minimum, above maximum, or non-integer number of bytes). The byte count for these packets is included in the receive aborted byte count register REBCR.

Register Name: RSPCR1

Register Description: Receive Size Violation Packet Count Register 1

Address (hex): 1020, 1220, 1420, 1620

Bit#	7	6	5	4	3	2	1	0
Name	RSPC7	RSPC6	RSPC5	RSPC4	RSPC3	RSPC2	RSPC1	RSPC0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Size Violation Packet Count (RSPC[7:0])

Register Name: RSPCR2

Register Description: Receive Size Violation Packet Count Register 2

Address (hex): 1021, 1221, 1421, 1621

Bit#	7	6	5	4	3	2	1	0
Name	RSPC15	RSPC14	RSPC13	RSPC12	RSPC11	RSPC10	RSPC9	RSPC8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Size Violation Packet Count (RSPC[15:8])

Register Name: RSPCR3

Register Description: Receive Size Violation Packet Count Register 3

Address (hex): 1022, 1222, 1422, 1622

Bit #	7	6	5	4	3	2	1	0
Name	RSPC23	RSPC22	RSPC21	RSPC20	RSPC19	RSPC18	RSPC17	RSPC16
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Size Violation Packet Count (RSPC[23:16])

Receive Byte Count (RBC[31:0]) – These thirty-two bits indicate the number of bytes contained in packets stored in the receive FIFO without an abort indication. Note: Bytes discarded due to FCS extraction, system loopback, FIFO reset, or an overflow condition may be included in this count.

Register Name: RBCR1

Register Description: Receive Byte Count Register 1

Address (hex): 1028, 1228, 1428, 1628

Bit #	7	6	5	4	3	2	1	0
Name	RBC7	RBC6	RBC5	RBC4	RBC3	RBC2	RBC1	RBC0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Byte Count (RBC[7:0])

Register Name: RBCR2

Register Description: Receive Byte Count Register 2

Address (hex): 1029, 1229, 1429, 1629

Bit#	7	6	5	4	3	2	1	0
Name	RBC15	RBC14	RBC13	RBC12	RBC11	RBC10	RBC9	RBC8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Byte Count (RBC[15:8])

Register Name: RBCR3

Register Description: Receive Byte Count Register 3

Address (hex): 102A, 122A, 142A, 162A

Bit#	7	6	5	4	3	2	1	0
Name	RBC23	RBC22	RBC21	RBC20	RBC19	RBC18	RBC17	RBC16
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Byte Count (RBC[23:16])

Register Name: RBCR4

Register Description: Receive Byte Count Register 4

Address (hex): 102B, 122B, 142B, 162B

Bit #	7	6	5	4	3	2	1	0
Name	RBC31	RBC30	RBC29	RBC28	RBC27	RBC26	RBC25	RBC24
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Byte Count (RBC[31:24])

Receive Aborted Byte Count (RABC[31:0]) – These thirty-two bits indicate the number of bytes contained in packets stored in the receive FIFO with an abort indication. Note: Bytes discarded due to FCS extraction, system loopback, FIFO reset, or an overflow condition may be included in this count.

Register Name: RABCR1

Register Description: Receive Aborted Byte Count Register 1

Address (hex): 102C, 122C, 142C, 162C

Bit#	7	6	5	4	3	2	1	0
Name	RABC7	RABC6	RABC5	RABC4	RABC3	RABC2	RABC1	RABC0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Aborted Byte Count (RABC[7:0])

Register Name: RABCR2

Register Description: Receive Aborted Byte Count Register 2

Address (hex): 102D, 122D, 142D, 162D

Bit #	7	6	5	4	3	2	1	0
Name	RABC15	RABC14	RABC13	RABC12	RABC11	RABC10	RABC9	RABC8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Aborted Byte Count (RABC[15:8])

Register Name: RABCR3

Register Description: Receive Aborted Byte Count Register 3

Address (hex): 102E, 122E, 142E, 162E

Bit#	7	6	5	4	3	2	1	0
Name	RABC23	RABC22	RABC21	RABC20	RABC19	RABC18	RABC17	RABC16
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Aborted Byte Count (RABC[23:16])

Register Name: RABCR4

Register Description: Receive Aborted Byte Count Register 4

Address (hex): 102F, 122F, 142F, 162F

Bit #	7	6	5	4	3	2	1	0
Name	RABC31	RABC30	RABC29	RABC28	RABC27	RABC26	RABC25	RABC24
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive Aborted Byte Count (RABC[31:24])

11.2.8 Receive FIFO Registers

Table 11-7 Receive FIFO Register Map

ADDRESS (hex) PORT 1 + 0h PORT 2 + 200h PORT 3 + 400h PORT 4 + 600h	NAME	FUNCTION
1080	RFC	Receive FIFO Control Register
1081	ı	Unused. Must be set = 0 for proper operation.
1082	RFLC1	Receive FIFO Level Control Register 1
1083	RFLC2	Receive FIFO Level Control Register 2
1084	RFPAC	Receive FIFO Port Address Control Register
1085	-	Unused. Must be set = 0 for proper operation.
1086	ı	Unused. Must be set = 0 for proper operation.
1087	-	Unused. Must be set = 0 for proper operation.
1088	RFSRL	Receive FIFO Status Register Latched
1089	-	Unused. Must be set = 0 for proper operation.
108A	RFSRIE	Receive FIFO Status Register Interrupt Enable
108B-108F	-	Unused. Must be set = 0 for proper operation.

Register Name: RFC

Register Description: Receive FIFO Control Register

Address (hex): 1080, 1280, 1480, 1680

Bit #	7	6	5	4	3	2	1	0
Name								RFRST
Default	0	0	0	0	0	0	0	1

Bits 7 to 1: Unused. Must be set = 0 for proper operation.

Bit 0 : Receive FIFO Reset (RFRST) – When 0, the Receive FIFO will resume normal operations, however, data is discarded until a start of packet/cell is received after RAM power-up is completed. When 1, the Receive FIFO is emptied, any transfer in progress is halted, the FIFO RAM is powered down, the associated RDXA signal is forced low, and all incoming data is discarded. If the port was selected when the reset was initiated, the port will be deselected, and must be reselected (REN deasserted with address on RADR or RSX asserted with address on RDAT) before any transfer will occur.

Register Name: RFLC1

Register Description: Receive FIFO Level Control Register 1

Address (hex): 1082, 1282, 1482, 1682

Bit#	7	6	5	4	3	2	1	0
Name	-	-	RFAF5	RFAF4	RFAF3	RFAF2	RFAF1	RFAF0
Default	0	0	0	1	0	0	0	0

Bits 7 to 6: Unused. Must be set = 0 for proper operation.

Bits 5 to 0: Receive FIFO Almost Full Level (RFAF[5:0]) – In POS-PHY packet processing mode, these six bits indicate the maximum number of four byte groups that can be available in the Receive FIFO for it to be considered "almost full". E.g., a value of 30 (1Eh) results in the FIFO being "almost full" when it has 120 (78h) bytes or less available. In cell processing mode, these bits are ignored.

Register Name: RFLC2

Register Description: Receive FIFO Level Control Register 2

Address (hex): 1083, 1283, 1483, 1683

Bit#	7	6	5	4	3	2	1	0
Name			RFAE5	RFAE4	RFAE3	RFAE2	RFAE1	RFAE0
Default	0	0	0	1	0	0	0	0

Bits 7 to 6: Unused. Must be set = 0 for proper operation.

Bits 5 to 0: Receive FIFO Almost Empty Level (RFAE[5:0]) – In POS-PHY packet processing mode, these six bits indicate the maximum number of four byte groups that can be stored in the Receive FIFO for it to be considered "almost empty". E.g., a value of 30 (1Eh) results in the FIFO being "almost empty" when it contains 120 (78h) bytes or less. In cell processing mode, RFAE[5:2] are ignored, and RFAE[1:0] indicate the maximum number of cells that can be stored in the Receive FIFO for it to be considered "almost empty".

Register Name: RFPAC

Register Description: Receive FIFO Port Address Control Register

Address (hex): 1084, 1284, 1484, 1684

Bit#	7	6	5	4	3	2	1	0
Name	RPA7	RPA6	RPA5	RPA4	RPA3	RPA2	RPA1	RPA0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive FIFO System Port Address (RPA[7:0]) – These eight bits set the Receive FIFO system interface port address used to poll the Receive FIFO for fill status, and select it for data transfer. Each port in the device must have a different port address. In Level II mode, bits RPA[7:5] are ignored, and if bits RPA[4:0] are set to a value of 1Fh, the port is disabled.

Register Name: RFSRL

Register Description: Receive FIFO Status Register Latched

Address (hex): 1088, 1288, 1488, 1688

Bit#	7	6	5	4	3	2	1	0
Name								RFOL
Default	0	0	0	0	0	0	0	0

Bits 7 to 1: Unused

Bit 0 : Receive FIFO Overflow Latched (RFOL) — This bit is cleared when a logic one is written to this bit, and set when a Receive FIFO overflow condition occurs. An overflow condition results in a loss of data.

Register Name: RFSRIE

Register Description: Receive FIFO Status Register Interrupt Enable

Address (hex): 108A, 128A, 148A, 168A

Bit#	7	6	5	4	3	2	1	0
Name								RFOIE
Default	0	0	0	0	0	0	0	0

Bits 7 to 1: Unused. Must be set = 0 for proper operation.

Bit 0 : Receive FIFO Overflow Interrupt Enable (RFOIE) – This bit enables an interrupt if the RFOL bit in the RFSRL register is set.

0 = interrupt disabled

1 = interrupt enabled

11.3 System Interface Registers

11.3.1 Transmit System Interface Registers

Table 11-8 Transmit System Interface Register Map

ADDRESS (hex)	NAME	FUNCTION
1940	TSIC1	Transmit System Interface Control Register 1
1941	TSIC2	Transmit System Interface Control Register 2
1942	TSISRL	Transmit System Interface Status Register Latched
1943	-	Unused. Must be set = 0 for proper operation.
1944	TSISRIE	Transmit System Interface Status Register Interrupt Enable
1945 – 194F	-	Unused. Must be set = 0 for proper operation.

Register Name: TSIC1

Register Description: Transmit System Interface Control Register 1

Address (hex): 1940

Bit#	7	6	5	4	3	2	1	0
Name					TPARP	TFLVI	TSBRE	THECT
Default	0	0	0	0	0	0	0	0

Bits 7 to 4 : Unused. Must be set = 0 for proper operation.

Bit 3 : Transmit System Parity Polarity (TPARP) – When 0, the TPAR signal will maintain odd parity (for all 0"s, TPAR is high). When 1, the TPAR signal will maintain even parity (for all 0"s, TPAR is low).

Bit 2 : Transmit System Fill Level Inversion (TFLVI) – When 0, the polarity of the TPXA, TDXA, and TSPA signals will be normal (high for data available). When 1, the polarity of the TPXA, TDXA, and TSPA signals will be inverted (low for data available).

Bit 1 : Transmit System Interface Byte Reordering Enable (TSBRE) – When 0, byte reordering is disabled, and the first byte transmitted is transferred across the system interface as the most significant byte (TDAT[15:8] in 16-bit mode). When 1, byte reordering is enabled, and the first byte transmitted is transferred across the system interface as the least significant byte (TDAT[7:0]).

Bit 0 : Transmit System HEC Transfer (THECT) – When 0, The HEC byte is not transferred across the transmit system interface. When 1, the HEC byte is transferred across the transmit system interface with the cell data.

Register Name: TSIC2

Register Description: Transmit System Interface Control Register 2

Address (hex): 1941

Bit#	7	6	5	4	3	2	1	0
Name			TXAD5	TXAD4	TXAD3	TXAD2	TXAD1	TXAD0
Default	0	0	0	0	0	0	0	0

Bits 7 to 6: Unused. Must be set = 0 for proper operation.

Bits 5 to 0: Transmit Cell/Packet Available Deassertion Time (TXAD[5:0]) – These six bits indicate the amount of data that can be transferred after the cell/packet available signal is deasserted. If more than the indicated amount of data is transferred, a Transmit FIFO overflow may occur.

In UTOPIA mode, only TXAD[2:0] are valid, and they indicate the number of transfers before the Transmit FIFO is full. For UTOPIA Level 2, a value of 00h enables the default mode, which is 5. (TDXA will transition low on the edge that samples payload byte 43 in 8-bit mode, payload bytes 37 and 38 in 16-bit mode.) For UTOPIA Level 3, a value of 00h or 01h enables the default mode. The default for UTOPIA Level 3 is for TDXA to transition low on the clock edge following the edge that samples the start of a cell.

In POS-PHY mode, TXAD[5:0] indicate the number of 4-byte data groups that can be written into the Transmit FIFO before it is full (maximum value 56 or 38h). In POS-PHY Level 2, a value of 00h enables the default mode, which is 1. (For an x-byte transfer, TDXA and TSPA will transition low on the edge that samples byte x-4 in 8-bit mode, bytes x-5 and x-4 in 16-bit mode.) In POS-PHY Level 3 (8-bit), a value of 00h enables the default mode, which is 1. (For an x-byte transfer, TDXA and TSPA will transition low on the edge that samples byte x-4). For POS-PHY Level 3 (16-bit), a value of 00h or 01h enables the default mode, which is 2. (For an x-byte transfer, TDXA and TSPA will transition low on the edge that samples bytes x-9 and x-8.) Note: A packet that is 4x+1, 4x+2, 4x+3, or 4x+4 (where x is an integer) bytes long consumes x+1 four byte data groups of space in the FIFO. This includes 2-byte and 3-byte packets, which consume a 4-byte data group of space in the FIFO.

Register Name: TSISRL

Register Description: Transmit System Interface Status Register Latched

Address (hex): 1942

Bit #	7	6	5	4	3	2	1	0
Name						-	TCLKAL	TPREL
Default	0	0	0	0	0	0	0	0

Bits 7 to 2: Unused.

Bit 1 : Transmit System Interface Clock Active (TCLKAL) – This bit is set when TSCLK samples the associated transmit system interface inputs.

Bit 0 : Transmit System Interface Parity Error Latched (TPREL) – This bit is set when a parity error is detected during a data transfer on the Transmit System Interface bus.

Register Name: TSISRIE

Register Description: Transmit System Interface Status Register Interrupt Enable

Address (hex): 1944

Bit #	7	6	5	4	3	2	1	0
Name								TPREIE
Default	0	0	0	0	0	0	0	0

Bits 7 to 1 : Unused. Must be set = 0 for proper operation.

Bit 0 : Transmit System Interface Parity Error Interrupt Enable (TPREIE) – This bit enables an interrupt if the TPREL bit in the TSISRL register is set.

0 = interrupt disabled

1 = interrupt enabled

11.3.2 Receive System Interface Registers

Table 11-9 Receive System Interface Register Map

Address (hex)	NAME	FUNCTION
1900	RSIC1	Receive System Interface Control Register 1
1901	RSIC2	Receive System Interface Control Register 2
1902	RSIC3	Receive System Interface Control Register 3
1903	RSIC4	Receive System Interface Control Register 4
1904	RSISRL	Receive System Interface Status Register Latched
1905-190F	-	Unused. Must be set = 0 for proper operation.

11.3.2.1 Register Bit Descriptions

Register Name: RSIC1

Register Description: Receive System Interface Control Register 1

Address (hex): 1900

Bit#	7	6	5	4	3	2	1	0
Name		RXAD2	RXAD1	RXAD0	RPARP	RFLVI	RSBRE	RHECT
Default	0	0	0	0	0	0	0	0

Bit 7: Unused. Must be set = 0 for proper operation.

Bits 6 to 4: Receive Cell Available Deassertion Time (RXAD[2:0]) – These three bits indicate the number of transfers that will occur after the selected Receive FIFO indicates it is "empty". A value of 000, enables the default mode. The default for UTOPIA Level 2 is 0 (RDXA will transition low on the clock edge following the clock edge that outputs payload byte 48 in 8-bit mode, payload bytes 47 and 48 in 16-bit mode). The default for UTOPIA Level 3 is for RDXA to transition low on the clock edge that outputs the start of cell. These bits are ignored in POS-PHY mode.

Bit 3 : Receive System Parity Polarity (RPARP) – When 0, the RPAR signal will maintain odd parity (for all 0"s, RPAR is high). When 1, the RPAR signal will maintain even parity (for all 0"s, RPAR is low).

Bit 2 : Receive System Fill Level Inversion (RFLVI) – When 0, the polarity of the RPXA and RDXA signals will be normal (high for data available). When 1, the polarity of the RPXA and RDXA signals will be inverted (low for data available).

Bit 1 : Receive System Interface Byte Reordering Enable (RSBRE) – When 0, byte reordering is disabled, and the first byte received is transferred across the system interface as the most significant byte (RDAT[15:8] in 16-bit mode). When 1, byte reordering is enabled, and the first byte received is transferred across the system interface as the least significant byte (RDAT[7:0]).

Bit 0 : Receive System HEC Transfer Enable (RHECT) – When 0, The HEC byte is not transferred across the receive system interface. When 1, the HEC byte is transferred across the receive system interface with the cell data.

Register Name: RSIC2

Register Description: Receive System Interface Control Register 2

Address (hex): 1901

Bit #	7	6	5	4	3	2	1	0
Name						RMDT2	RMDT1	RMDT0
Default	0	0	0	0	0	0	0	0

Bits 7 to 3: Unused. Must be set = 0 for proper operation.

Bit 2 to 0 : Receive System RVAL Minimum Deassertion Time (RMDT[2:0]) — These three bits indicate the minimum number of clock cycles that RVAL must remain deasserted between packets transferred from the same port, a transfer of data equal to the maximum burst length (if enabled), or before RSX can be asserted. A value of zero, means that RVAL will not deassert between packets transferred from the same port or between transfers of the maximum burst length when no other port has data available. These bits are ignored in UTOPIA and POS-PHY Level II modes. Note: The RVAL minimum deassertion time is for optionally extending the time between packet transfers and port changes to allow a POS-PHY Level 3 Link Layer device enough time to deassert $\overline{\text{REN}}$ and pause the next data transfer.

Register Name: RSIC3

Register Description: Receive System Interface Control Register 3

Address (hex): 1902

Bit#	7	6	5	4	3	2	1	0
Name	RLBL7	RLBL6	RLBL5	RLBL4	RLBL3	RLBL2	RLBL1	RLBL0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive System Loopback Bandwidth Limit (RLBL[7:0]) — These eight bits limit the maximum bandwidth of a single port during system loopback. For RLBL[7:0] equals x the bandwidth will be limited to 1/x of the maximum system interface bandwidth. In 8-bit and 16-bit mode, a value of 00h is treated as 01h.

Register Name: RSIC4

Register Description: Receive System Interface Control Register 4

Address (hex): 1903

Bit#	7	6	5	4	3	2	1	0
Name	-		RMBL5	RMBL4	RMBL3	RMBL2	RMBL1	RMBL0
Default	0	0	0	0	0	0	0	0

Bits 7to 6: Unused. Must be set = 0 for proper operation.

Bit 5 to 0 : Receive Maximum Burst Length (RMBL[5:0]) — In POS-PHY Level 3, these six bits limit the maximum number of four byte data groups that can be transferred from a port before switching to another port. The maximum number of transfers is 2*(RMBL[5:0]+1} in 16-bit mode, and 4*(RMBL[5:0]+1} in 8-bit mode. Note: if no other port is ready to start a transfer, transfer from the current port will continue if the port contains more data than the almost empty level or contains an end of packet. These bits are ignored in POS-PHY Level 2 or UTOPIA mode. A value of 00h disables the maximum burst length.

Register Name: RSISRL

Register Description: Receive System Interface Status Register Latched

Address (hex): 1904

Bit #	7	6	5	4	3	2	1	0
Name								RCLKAL
Default	0	0	0	0	0	0	0	0

Bits 7 to 1: Unused.

Bit 0 : Receive System Interface Clock Active Latched (RCLKAL) – This bit is set when RCLK samples the associated receive system interface inputs.

11.4 Receive T1 Framer Registers

Table 11-10 T1 Receive Framer Register Map

ADDRESS (hex) PORT 1 + 0h PORT 2 + 200h PORT 3 + 400h	NAME	FUNCTION
PORT 4 + 600h		
0000-00F		Unused. Must be set = 0 for proper operation.
0010	RHC	Rx HDLC Control
0011	RHBSE	Rx HDLC Bit Suppress
0012	RDS0SEL	Rx DS0 Monitor Select
0013	RSIGC	Rx Signaling Control
0014	RCR2	Rx Control 2
0015	RBOCC	Rx BOC Control
0016 – 001F		Unused. Must be set = 0 for proper operation.
0020	RIDR1	Rx Idle Definition 1
0021	RIDR2	Rx Idle Definition 2
0022	RIDR3	Rx Idle Definition 3
0023	RIDR4	Rx Idle Definition 4
0024	RIDR5	Rx Idle Definition 5
0025	RIDR6	Rx Idle Definition 6
0026	RIDR7	Rx Idle Definition 7
0027	RIDR8	Rx Idle Definition 8
0028	RIDR9	Rx Idle Definition 9
0029	RIDR10	Rx Idle Definition 10
002A	RIDR11	Rx Idle Definition 11
002B	RIDR12	Rx Idle Definition 12
002C	RIDR13	Rx Idle Definition 13
002D	RIDR14	Rx Idle Definition 14
002E	RIDR15	Rx Idle Definition 15
002F	RIDR16	Rx Idle Definition 16
0030	RIDR17	Rx Idle Definition 17
0031	RIDR18	Rx Idle Definition 18
0032	RIDR19	Rx Idle Definition 19
0033	RIDR20	Rx Idle Definition 20
0034	RIDR21	Rx Idle Definition 21
0035	RIDR22	Rx Idle Definition 22
0036	RIDR23	Rx Idle Definition 23
0037	RIDR24	Rx Idle Definition 24
0038	RSAOI1	Rx Sig All Ones Insertion 1
0039	RSAOI2	Rx Sig All Ones Insertion 2
003A	RSAOI3	Rx Sig All Ones Insertion 3
003B		Unused. Must be set = 0 for proper operation.
003C	RDMWE1	Rx Digital Milliwatt Enable 1
003D	RDMWE2	Rx Digital Milliwatt Enable 2
003E	RDMWE3	Rx Digital Milliwatt Enable 3
003F	_	Unused. Must be set = 0 for proper operation.
0040	RS1	Rx Signaling 1
0041	RS2	Rx Signaling 2
0042	RS3	Rx Signaling 3
0043	RS4	Rx Signaling 4
0044	RS5	Rx Signaling 5
0045	RS6	Rx Signaling 6
0046	RS7	Rx Signaling 7

ADDRESS (hex)		
PORT 1 + 0h		
PORT 2 + 200h	NAME	FUNCTION
PORT 3 + 400h	IVAIVIL	TONOTION
PORT 4 + 600h		
0047	RS8	Rx Signaling 8
0048	RS9	Rx Signaling 9
0049	RS10	Rx Signaling 10
004A	RS11	Rx Signaling 11
004B	RS12	Rx Signaling 12
004C - 004F		Unused. Must be set = 0 for proper operation.
0050	LCVCR1	Rx Line-Code Violation Counter 1
0051	LCVCR2	Rx Line-Code Violation Counter 2
0052	PCVCR1	Rx Path-Code Violation Count 1
0053	PCVCR2	Rx Path-Code Violation Count 2
0054	FOSCR1	Rx Frames Out-of-Sync Counter 1
0055	FOSCR2	Rx Frames Out-of-Sync Counter 2
0056-005F	_	Unused. Must be set = 0 for proper operation.
0060	RDS0M	Rx DS0 Monitor
0061	_	Unused. Must be set = 0 for proper operation.
0062	RFDL	Rx FDL
0063	RBOC	Rx BOC
0064	RSLC1	Rx SLC96 Data Link 1
0065	RSLC2	Rx SLC96 Data Link 2
0066	RSLC3	Rx SLC96 Data Link 3
0067-007F	_	Unused. Must be set = 0 for proper operation.
0800	RMMR	Rx Master Mode
0081	RCR1	Rx Control 1
0082	RIBCC	Rx In-Band Code Control
0083	RCR3	Rx Control 3
0084	RIOCR	Rx I/O Configuration
0085	RGCCR	Rx Gapped Clock Control
0086	ERCNT	Rx Error Count Configuration
0087	RHFC	Rx HDLC FIFO Control
0088	-	Unused. Must be set = 0 for proper operation.
0089	RSCC	Rx Spare Code Control
008A	RBICR	Rx BERT Interface Control
008B	RBBS	Rx BERT Bit Suppress En
008C – 008F	<u> </u>	Unused. Must be set = 0 for proper operation.
0090	RLS1	Rx Latched Status 1
0091	RLS2	Rx Latched Status 2
0092	RLS3	Rx Latched Status 3
0093	RLS4	Rx Latched Status 4
0094 0095	RLS5	Rx Latched Status 5
0096	RLS7	Unused. Must be set = 0 for proper operation. Rx Latched Status 7
0096	KL0/	
0097	RSS1	Unused. Must be set = 0 for proper operation. Rx Signaling CoS Status 1
0098	RSS2	Rx Signaling CoS Status 1 Rx Signaling CoS Status 2
0099 009A	RSS3	Rx Signaling CoS Status 2 Rx Signaling CoS Status 3
009A 009B		Unused. Must be set = 0 for proper operation.
009B	RSCD1	Rx Spare Code Definition 1
009C	RSCD2	Rx Spare Code Definition 1
009E		Unused. Must be set = 0 for proper operation.
009E	RIIR	Rx Interrupt Information Reg
00A0	RIM1	Rx Interrupt Mask Reg 1
00A0		Unused. Must be set = 0 for proper operation.
1		

ADDRESS (hex) PORT 1 + 0h PORT 2 + 200h PORT 3 + 400h PORT 4 + 600h	NAME	FUNCTION
00A2	RIM3	Rx Interrupt Mask Reg 3
00A3	RIM4	Rx Interrupt Mask Reg 4
00A4	RIM5	Rx Interrupt Mask Reg 5
00A5		Unused. Must be set = 0 for proper operation.
00A6 00A7	RIM7	Rx Interrupt Mask Reg 7
00A7 00A8		Unused. Must be set = 0 for proper operation.
00A8 00A9	RSCSE1 RSCSE2	Rx Sig CoS Interrupt Enable 1 Rx Sig CoS Interrupt Enable 2
00A9 00AA	RSCSE2	Rx Sig CoS Interrupt Enable 2
00AA 00AB	ROUSES	Unused. Must be set = 0 for proper operation.
00AB 00AC	RUPCD1	Rx Up-Code Definition 1
00AD	RUPCD2	Rx Up-Code Definition 2
00AE	RDNCD1	Rx Down-Code Definition 1
00AF	RDNCD2	Rx Down-Code Definition 2
00B0	RRTS1	Rx Real-Time Status 1
00B1		Unused. Must be set = 0 for proper operation.
00B2	RRTS3	Rx Real-Time Status 3
00B3	_	Unused. Must be set = 0 for proper operation.
00B4	RRTS5	Rx Real-Time Status 5 (HDLC)
00B5	RHPBA	Rx HDLC Packet Bytes Available
00B6	RHF	Rx HDLC FIFO
00B7-00C3		Unused. Must be set = 0 for proper operation.
00C4	RCMR1	Rx Channel Mark 1
00C5	RCMR2	Rx Channel Mark 2
00C6	RCMR3	Rx Channel Mark 3
00C7	RCMR4	Rx Channel Mark 4
00C8	RSI1	Rx Signaling Insertion 1
00C9 00CA	RSI2	Rx Signaling Insertion 2
00CA 00CB	RSI3 RSI4	Rx Signaling Insertion 3 Rx Signaling Insertion 4
00CB	RGCCS1	Rx Gapped Clock Channel Select 1
00CD	RGCCS2	Rx Gapped Clock Channel Select 2
00CE	RGCCS3	Rx Gapped Clock Channel Select 3
00CF	RGCCS4	Rx Gapped Clock Channel Select 4
00D0	RCICE1	Rx Channel Idle Code Enable 1
00D1	RCICE2	Rx Channel Idle Code Enable 2
00D2	RCICE3	Rx Channel Idle Code Enable 3
00D3	_	Unused. Must be set = 0 for proper operation.
00D4	RBCS1	Rx BERT Channel Select 1
00D5	RBCS2	Rx BERT Channel Select 2
00D6	RBCS3	Rx BERT Channel Select 3
00D7 – 00DF	_	Unused. Must be set = 0 for proper operation.

11.4.1 Receive Master-Mode Register

The receive master-mode register (RMMR) controls the initialization of the receive-side framer. The FRM_EN bit can be left low if the framer for that particular port is not going to be used, putting the circuit in a low-power (sleep) state.

Register Name: RMMR

Register Description: Receive Master Mode Register

Address (hex): 0080, 0280, 0480, 0680

Bit#	7	6	5	4	3	2	1	0
Name	FRM_EN	INIT_DONE	_				SFTRST	T1/E1
Default	0	0	0	0	0	0	0	0

Bit 7: Framer Enable (FRM_EN). This bit must be written with the desired value prior to setting INIT DONE.

0 = Framer disabled (held in low-power state)

1 = Framer enabled (all features active)

Bit 6 : Initialization Done (INIT_DONE). The host (user) must set this bit once the configuration registers have been written. The host is required to write or clear all RAM based registers (addresses 00H to 7FH) prior to setting this bit. Once INIT_DONE is set, the internal processor will check the FRM_EN bit. If enabled, the internal processor continues executing based on the initial configuration.

Bits 5 to 2 : Unused. Must be set = 0 for proper operation.

Bit 1 : Soft Reset (SFTRST) Level-sensitive processor reset. Should be taken high, then low to reset and initialize the internal processor.

0 = Normal operation

1 = Hold the internal RISC in reset. This bit only affects the receive-side processor.

Bit 0 : Receiver T1/E1 Mode Select (T1/E1) This bit sets the operating mode for receiver only! This bit must be set to the desired state before writing INIT DONE.

0 = T1 operation

1 = E1 operation

11.4.2 Interrupt Information Register

The interrupt information registers provide an indication of which DS26556 status registers are generating an interrupt. When an interrupt occurs, the host can read RIIR to quickly identify which of the seven T1 receive status registers is causing the interrupt(s). The interrupt information register bits clear once the appropriate interrupt has been serviced and cleared, as long as no other interrupt condition is present in the associated status register. Status bits that have been masked through the receive-interrupt mask (RIMx) registers are also masked from the RIIR register.

Register Name: RIIR

Register Description: Receive Interrupt Information Register

Address (hex): 009F, 029F, 049F, 069F

Bit#	7	6	5	4	3	2	1	0
Name	_	RLS7	RLS6	RLS5	RLS4	RLS3	RLS2*	RLS1
Default	0	0	0	0	0	0	0	0

^{*}RLS2 does not create an interrupt, therefore this bit is not used in T1 mode.

11.4.3 T1 Receive Control Registers

These registers provide the primary setup and control of the receive framers.

Register Name: RCR1

Register Description: Receive Control Register 1
Address (hex): 0081, 0281, 0481, 0681

Bit#	7	6	5	4	3	2	1	0
Name	SYNCT	RB8ZS	RFM	ARC	SYNCC	RJC	SYNCE	RESYNC
Default	0	0	0	0	0	0	0	0

Bit 7: Sync Time (SYNCT)

0 = qualify 10 bits

1 = qualify 24 bits

Bit 6 : Receive B8ZS Enable (RB8ZS)

0 = B8ZS disabled

1 = B8ZS enabled

Bit 5: Receive Frame Mode Select (RFM)

0 = ESF framing mode

1 = D4 framing mode

Bit 4 : Auto Resync Criteria (ARC)

0 = Resync on OOF or LOS event

1 = Resync on OOF only

Bit 3 : Sync Criteria (SYNCC)

In D4 Framing Mode:

0 = search for Ft pattern, then search for Fs pattern

1 = cross couple Ft and Fs pattern

In ESF Framing Mode:

0 = search for FPS pattern only

1 = search for FPS and verify with CRC6

Bit 2 : Receive Japanese CRC6 Enable (RJC)

0 = use ANSI/AT&T/ITU CRC6 calculation (normal operation)

1 = use Japanese standard JT-G704 CRC6 calculation

Bit 1 : Sync Enable (SYNCE)

0 = auto resync enabled

1 = auto resync disabled

Bit 0 : Resynchronize (RESYNC). When toggled from low to high, a resynchronization of the receive-side framer is initiated. Must be cleared and set again for a subsequent resync.

Register Name: RCR2

Register Description: Receive Control Register 2
Address (hex): 0014, 0214, 0414, 0614

Bit#	7	6	5	4	3	2	1	0
Name	_	_	_	RSLC96	OOF2	OOF1	RAIIE	RD4RM
Default	0	0	0	0	0	0	0	0

Bits 7 to 5 : Unused. Must be set = 0 for proper operation.

Bit 4 : Receive SLC-96 Synchronizer Enable (RSLC96). See Section 11.4.13.

0 = the SLC-96 synchronizer is disabled

1 = the SLC-96 synchronizer is enable

Bits 3, 2: Out-of-Frame Select Bits (OOF2, OOF1)

OOF2	OOF1	OUT OF FRAME CRITERIA
0	0	2/4 frame bits in error
0	1	2/5 frame bits in error
1	0	2/6 frame bits in error
1	1	2/6 frame bits in error

Bit 1 : Receive RAI Integration Enable (RAIIE) The ESF RAI indication can be interrupted for a period not to exceed 100ms per interruption (T1.403). In ESF mode, setting RAIIE causes the RAI status from the DS26556 to be integrated for 200ms.

0 = RAI detects when 16 consecutive patterns of 00FF appear in the FDL.

RAI clears when 14 or less patterns of 00FF hex out of 16 possible appear in the FDL.

1 = RAI detects when the condition has been present for greater than 200ms.

RAI clears when the condition has been absent for greater than 200ms.

Bit 0: Receive-Side D4 Remote Alarm Select (RD4RM)

0 = zeros in bit 2 of all channels

1 = a one in the S-bit position of frame 12 (J1 Yellow Alarm Mode)

Register Name: RCR3

Register Description: Receive Control Register 3
Address (hex): 0083, 0283, 0483, 0683

Bit#	7	6	5	4	3	2	1	0
Name	-	_	RSERC	_	_	RLB	PLB	FLB
Default	0	0	0	0	0	0	0	0

Bits 7 & 6 : Unused. Must be set = 0 for proper operation.

Bit 5: RSER Control (RSERC)

0 = Allow RSER to output data as received under all conditions (normal operation)

1 = Force RSER to one under loss-of-frame alignment conditions

Bits 4 & 3: Unused. Must be set = 0 for proper operation.

Bit 2 : Remote Loopback (RLB)

0 = loopback disabled

1 = loopback enabled

Bit 1 : Payload Loopback (PLB)

0 = loopback disabled

1 = loopback enabled

Bit 0 : Framer Loopback (FLB)

0 = loopback disabled

1 = loopback enabled

Register Name: RIOCR

Register Description: Receive I/O Configuration Register

Address (hex): 0084, 0284, 0484, 0684

2 Bit# 6 5 3 0 4 RSMS1 RCLKINV **RSYNCINV** H100EN **HSCLKM RSMS RSIO** RSMS2 Name Default 0 0 0 0 0

Bit 7: RCLK Invert (RCLKINV)

0 = No inversion

1 = Invert RCLK as input

Bit 6: RSYNC Invert (RSYNCINV)

0 = No inversion

1 = Invert RSYNC output

Bit 5: H.100 SYNC Mode (H100EN) See additional details in Section 8.4.2.

0 = Normal operation

1 = HSSYNC signals are shifted.

Note: This bit setting must match TIOCR.HSCLKM

Bit 4: HSYSCLK Mode Select (HSCLKM)

0 = if HSYSCLK is 1.544MHz

1 = if HSYSCLK is 2.048MHz

Note: This bit setting must match TIOCR.HSCLKM

Bit 3: RSYNC Multiframe Skip Control (RSMS) This bit is useful in framing format conversions from D4 to ESF.

0 = RSYNC outputs a pulse at every multiframe.

1 = RSYNC outputs a pulse at every other multiframe.

Bit 2: Unused. Must be set = 0 for proper operation.

Bit 1: RSYNC Mode Select 2 (RSMS2)

T1: RSYNC pin must be programmed in the output frame mode

0 = do not pulse double wide in signaling frames

1 = do pulse double wide in signaling frames

E1: RSYNC pin must be programmed in the output multiframe mode

0 = RSYNC outputs CAS multiframe boundaries

1 = RSYNC outputs CRC4 multiframe boundaries

Bit 0: RSYNC Mode Select 1 (RSMS1) Selects frame or multiframe pulse when RSYNC pin is in output mode.

0 = frame mode

1 = multiframe mode

Register Name: RRTS1

Register Description: Receive Real-Time Status Register 1

Address (hex): 00B0, 02B0, 04B0, 06B0

Bit#	7	6	5	4	3	2	1	0
Name	_			_	RRAI	RAIS	RLOS	RLOF
Default	0	0	0	0	0	0	0	0

All bits in this register are real-time (not latched).

Bits 7 to 4: Unused.

Bit 3 : Receive Remote Alarm Indication Condition (RRAI) Set when a remote alarm is received at RPOS and RNEG.

Bit 2 : Receive Alarm Indication Signal Condition (RAIS) Set when an unframed all-ones code is received at RPOS and RNEG.

Bit 1 : Receive Loss-of-Signal Condition (RLOS) Set when 192 consecutive zeros have been detected at RPOS and RNEG.

Bit 0 : Receive Loss-of-Frame Condition (RLOF) Set when the DS26556 is not synchronized to the received data stream.

Register Name: RLS1

Register Description: Receive Latched Status Register 1

Address (hex): 0090, 0290, 0490, 0690

Bit#	7	6	5	4	3	2	1	0
Name	RRAIC	RAISC	RLOSC	RLOFC	RRAID	RAISD	FLOSD	RLOFD
Default	0	0	0	0	0	0	0	0

All bits in this register are latched and can create interrupts.

Bit 7 : Receive Remote Alarm Indication Condition Clear (RRAIC) Falling edge detect of RRAI. Set when a RRAI condition has cleared.

Bit 6 : Receive Alarm Indication Signal Condition Clear (RAISC) Falling edge detect of RAIS. Set when a RAIS condition has cleared.

Bit 5 : Receive Loss-of-Signal Condition Clear (RLOSC) Falling edge detect of RLOS. Set when an RLOS condition has cleared.

Bit 4 : Receive Loss-of-Frame Condition Clear (RLOFC) Falling edge detect of RLOF. Set when an RLOF condition has cleared.

Bit 3 : Receive Remote Alarm Indication Condition Detect (RRAID) Rising edge detect of RRAI. Set when a remote alarm is received at RPOS and RNEG.

Bit 2 : Receive Alarm Indication Signal Condition Detect (RAISD) Rising edge detect of RAIS. Set when an unframed all-ones code is received at RPOS and RNEG.

Bit 1 : Receive Loss-of-Signal Condition Detect (RLOSD) Rising edge detect of RLOS. Set when 192 consecutive zeros have been detected at RPOS and RNEG.

Bit 0 : Receive Loss-of-Frame Condition Detect (RLOFD) Rising edge detect of RLOF. Set when the DS26556 has lost synchronized to the received data stream.

Register Name: RIM1

Register Description: Receive Interrupt Mask Register 1

Address (hex): 00A0, 02A0, 04A0, 06A0

Bit#	7	6	5	4	3	2	1	0
Name	RRAIC	RAISC	RLOSC	RLOFC	RRAID	RAISD	RLOSD	RLOFD
Default	0	0	0	0	0	0	0	0

Bit 7: Receive Remote Alarm Indication Condition Clear (RRAIC)

0 = interrupt masked

1 = interrupt enabled

Bit 6 : Receive Alarm Indication Signal Condition Clear (RAISC)

0 = interrupt masked

1 = interrupt enabled

Bit 5 : Receive Loss-of-Signal Condition Clear (RLOSC)

0 = interrupt masked

1 = interrupt enabled

Bit 4 : Receive Loss-of-Frame Condition Clear (RLOFC)

0 = interrupt masked

1 = interrupt enabled

Bit 3: Receive Remote Alarm Indication Condition Detect (RRAID)

0 = interrupt masked

1 = interrupt enabled

Bit 2: Receive Alarm Indication Signal Condition Detect (RAISD)

0 = interrupt masked

1 = interrupt enabled

Bit 1: Receive Loss-of-Signal Condition Detect (RLOSD)

0 = interrupt masked

1 = interrupt enabled

Bit 0 : Receive Loss-of-Frame Condition Detect (RLOFD)

0 = interrupt masked

1 = interrupt enabled

Register Name: RLS2

Register Description: Receive Latched Status Register 2

Address (hex): 0091, 0291, 0491, 0691

Bit#	7	6	5	4	3	2	1	0
Name	RPDV	_	COFA	8ZD	16ZD	SEFE	B8ZS	FBE
Default	0	0	0	0	0	0	0	0

All bits in this register are latched. This register does not create interrupts.

Bit 7 : Receive Pulse Density Violation Event (RPDV) Set when the receive data stream does not meet the ANSI T1.403 requirements for pulse density.

Bit 6: Unused.

Bit 5 : Change-of-Frame Alignment Event (COFA) Set when the last resync resulted in a change of frame or multiframe alignment.

Bit 4 : Eight Zero Detect Event (8ZD) Set when a string of at least eight consecutive zeros (regardless of the length of the string) have been received at RPOS and RNEG.

Bit 3 : Sixteen Zero Detect Event (16ZD) Set when a string of at least 16 consecutive zeros (regardless of the length of the string) have been received at RPOS and RNEG.

Bit 2 : Severely Errored Framing Event (SEFE) Set when 2 out of 6 framing bits (Ft or FPS) are received in error.

Bit 1 : B8ZS Codeword Detect Event (B8ZS) Set when a B8ZS codeword is detected at RPOS and RNEG independent of whether the B8ZS mode is selected or not. This bit is useful for automatically setting the line coding.

Bit 0: Frame Bit Error Event (FBE) Set when an Ft (D4) or FPS (ESF) framing bit is received in error.

Register Name: RRTS3

Register Description: Receive Real-Time Status Register 3

Address (hex): 00B2, 02B2, 04B2, 06B2

Bit#	7	6	5	4	3	2	1	0
Name	_	_	_		LORC	LSP	LDN	LUP
Default	0	0	0	0	0	0	0	0

All bits in this register are real-time (not latched).

Bits 7 to 4: Unused.

Bit 3 : Loss-of-Receive Clock Condition (LORC) Set when the RCLK pin has not transitioned for one channel time.

Bit 2 : Spare Code Detected Condition (LSP) Set when the spare code as defined in the RSCD1/2 registers is being received.

Bit 1 : Loop-Down Code Detected Condition (LDN) Set when the loop-down code as defined in the RDNCD1/2 register is being received.

Bit 0 : Loop-Up Code Detected Condition (LUP) Set when the loop-up code as defined in the RUPCD1/2 register is being received.

Register Name: RLS3

Register Description: Receive Latched Status Register 3

Address (hex): **0092, 0292, 0492, 0692**

Bit#	7	6	5	4	3	2	1	0
Name	LORCC	LSPC	LDNC	LUPC	LORCD	LSPD	LDND	LUPD
Default	0	0	0	0	0	0	0	0

All bits in this register are latched and can create interrupts.

Bit 7: Loss-of-Receive Clock Condition Clear (LORCC) Falling edge detect of LORC. Set when a LORC condition was detected and then removed.

Bit 6 : Spare Code Detected Condition Clear (LSPC) Falling edge detect of LSP. Set when a spare-code match condition was detected and then removed.

Bit 5: Loop-Down Code Detected Condition Clear (LDNC) Falling edge detect of LDN. Set when a loop-down condition was detected and then removed.

Bit 4: Loop-Up Code Detected Condition Clear (LUPC) Falling edge detect of LUP. Set when a loop-up condition was detected and then removed.

Bit 3: Loss of Receive Clock Condition Detect (LORCD) Rising edge detect of LORC. Set when the RCLK pin has not transitioned for one channel time.

Bit 2 : Spare Code Detected Condition Detect (LSPD) Rising edge detect of LSP. Set when the spare code as defined in the RSCD1/2 registers is being received.

Bit 1 : Loop-Down Code Detected Condition Detect (LDND) Rising edge detect of LDN. Set when the loop-down code as defined in the RDNCD1/2 register is being received.

Bit 0 : Loop-Up Code Detected Condition Detect (LUPD) Rising edge detect of LUP. Set when the loop-up code as defined in the RUPCD1/2 register is being received.

Register Name: RIM3

Register Description: Receive Interrupt Mask Register 3

Address (hex): 00A2, 02A2, 04A2, 06A2

Bit#	7	6	5	4	3	2	1	0
Name	LORCC	LSPC	LDNC	LUPC	LORCD	LSPD	LDND	LUPD
Default	0	0	0	0	0	0	0	0

Bit 7: Loss-of-Receive Clock Condition Clear (LORCC)

0 = interrupt masked

1 = interrupt enabled

Bit 6 : Spare Code Detected Condition Clear (LSPC)

0 = interrupt masked

1 = interrupt enabled

Bit 5: Loop-Down Code Detected Condition Clear (LDNC)

0 = interrupt masked

1 = interrupt enabled

Bit 4 : Loop-Up Code Detected Condition Clear (LUPC)

0 = interrupt masked

1 = interrupt enabled

Bit 3 : Loss-of-Receive Clock Condition Detect (LORCD)

0 = interrupt masked

1 = interrupt enabled

Bit 2 : Spare Code Detected Condition Detect (LSPD)

0 = interrupt masked

1 = interrupt enabled

Bit 1: Loop-Down Code Detected Condition Detect (LDND)

0 = interrupt masked

1 = interrupt enabled

Bit 0 : Loop-Up Code Detected Condition Detect (LUPD)

0 = interrupt masked

1 = interrupt enabled

Register Name: RLS4

Register Description: Receive Latched Status Register 4

Address (hex): 0093, 0293, 0493, 0693

Bit #	7	6	5	4	3	2	1	0
Name	-	-	-		RSCOS	1SEC	TIMER	RMF
Default	0	0	0	0	0	0	0	0

All bits in this register are latched and can create interrupts.

Bits 7 to 4: Unused. Must be set = 0 for proper operation.

Bit 3 : Receive Signaling Change-of-State Event (RSCOS) Set when any channel selected by the receive signaling change-of-state interrupt-enable registers (RSCSE1 through RSCSE3), changes signaling state.

Bit 2: One-Second Timer (1SEC) Set on every one-second interval based on RCLK.

Bit 1 : Timer Event (TIMER) Follows the error counter update interval as determined by the ECUS bit in the error counter configuration register (ERCNT).

T1: Set on increments of 1 second or 42ms based on RCLK.

E1: Set on increments of 1 second or 62.5ms based on RCLK.

Bit 0 : Receive Multiframe Event (RMF) Set every 1.5ms on D4 MF boundaries or every 3ms on ESF MF boundaries.

Register Name: RIM4

Register Description: Receive Interrupt Mask Register 4

Address (hex): **00A3**, **02A3**, **04A3**, **06A3**

Bit#	7	6	5	4	3	2	1	0
Name	-	-	-	-	RSCOS	1SEC	TIMER	RMF
Default	0	0	0	0	0	0	0	0

Bits 7 to 4 : Unused. Must be set = 0 for proper operation.

Bit 3: Receive Signaling Change-of-State Event (RSCOS)

0 = interrupt masked

1 = interrupt enabled

Bit 2 : One-Second Timer (1SEC)

0 = interrupt masked

1 = interrupt enabled

Bit 1 : Timer Event (TIMER)

0 = interrupt masked

1 = interrupt enabled

Bit 0 : Receive Multiframe Event (RMF)

0 = interrupt masked

1 = interrupt enabled

Register Name: RLS7

Register Description: Receive Latched Status Register 7

Address (hex): 0096, 0296, 0496, 0696

Bit#	7	6	5	4	3	2	1	0
Name	_	_	RRAI-CI	RAIS-CI	RSLC96	RFDLF	BC	BD
Default	0	0	0	0	0	0	0	0

All bits in this register are latched and can create interrupts.

Bits 6 & 7: Unused.

Bit 5 : Receive RAI-CI Detect (RRAI-CI) Set when an RAI-CI pattern has been detected by the receiver (see Section 11.5.1). This bit is active in ESF-framing mode only, and sets only if an RAI condition is being detected (RRTS1.3). When the host reads (and clears) this bit, it will set again each time the RAI-CI pattern is detected (approximately every 1.1 seconds).

Bit 4 : Receive AIS-CI Detect (RAIS-CI) Set when an AIS-CI pattern has been detected by the receiver (see Section 11.5.1). This bit is set only if an AIS condition is being detected (RRTS1.2). This is a latched bit that must be cleared by the host, and sets again each time the AIS-CI pattern is detected (approximately every 1.2 seconds).

Bit 3 : Receive SLC-96 Alignment Event (RSLC96) Set when a valid SLC-96 alignment pattern is detected in the fs-bit stream, and the RSLCx registers have data available for retrieval (Section 11.12).

Bit 2 : Receive FDL Register Full Event (RFDLF) Set when the 8-bit RFDL register is full. Useful for SLC-96 operation, or manual extraction of FDL data bits (Sections 11.12 and 11.13).

Bit 1 : BOC Clear Event (BC) Set when a valid BOC is no longer detected (with the disintegration filter applied). (Section 11.11)

Bit 0 : BOC Detect Event (BD) Set when a valid BOC has been detected (with the BOC filter applied) (Section 11.11)

Register Name: RIM7

Register Description: Receive Interrupt Mask Register 7 (BOC/FDL)

Address (hex): 00A6, 02A6, 04A6, 06A6

Bit#	7	6	5	4	3	2	1	0
Name	_	_	RRAI-CI	RAIS-CI	RSLC96	RFDLF	BC	BD
Default	0	0	0	0	0	0	0	0

Bits 6 & 7: Unused. Must be set = 0 for proper operation.

Bit 5 : Receive RAI-CI (RRAI-CI)

0 = interrupt masked

1 = interrupt enabled

Bit 4: Receive AIS-CI (RAIS-CI)

0 = interrupt masked

1 = interrupt enabled

Bit 3: Receive SLC-96 (RSLC96)

0 = interrupt masked

1 = interrupt enabled

Bit 2 : Receive FDL Register Full (RFDLF)

0 = interrupt masked

1 = interrupt enabled

Bit 1 : BOC Clear Event (BC)

0 = interrupt masked

1 = interrupt enabled

Bit 0 : BOC Detect Event (BD)

0 = interrupt masked

1 = interrupt enabled

Register Name: RDMWE1

Register Description: T1 Receive-Digital Milliwatt-Enable Register 1

Address (hex): 003C, 023C, 043C, 063C

Bit #	7	6	5	4	3	2	1	0
Name	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1
Default	0	0	0	0	0	0	0	0

Bits 0 to 7 : Receive-Digital Milliwatt Enable for Channels 8 to 1 (CH8 to CH1)

0 = Do not affect the receive data associated with this channel.

1 = Replace the receive data associated with this channel with digital milliwatt code.

Register Name: RDMWE2

Register Description: T1 Receive-Digital Milliwatt-Enable Register 2

Address (hex): 003D, 023D, 043D, 063D

Bit#	7	6	5	4	3	2	1	0
Name	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9
Default	0	0	0	0	0	0	0	0

Bits 0 to 7 : Receive-Digital Milliwatt Enable for Channels 16 to 9 (CH16 to CH9)

0 = Do not affect the receive data associated with this channel.

1 = Replace the receive data associated with this channel with digital milliwatt code.

Register Name: RDMWE3

Register Description: T1 Receive-Digital Milliwatt-Enable Register 3

Address (hex): 003E, 023E, 043E, 063E

Bit#	7	6	5	4	3	2	1	0
Name	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17
Default	0	0	0	0	0	0	0	0

Bits 0 to 7: Receive-Digital Milliwatt Enable for Channels 1 to 24 (CH24 to CH17)

0 = Do not affect the receive data associated with this channel.

1 = Replace the receive data associated with this channel with digital milliwatt code.

Register Name: ERCNT

Register Description: Error Counter Configuration Register

Address (hex): 0086, 0286, 0486, 0886

Bit#	7	6	5	4	3	2	1	0
Name	1SECS	MCUS	MECU	ECUS	EAMS	FSBE	MOSCRF	LCVCRF
Default	0	0	0	0	0	0	0	0

- Bit 7: One-Second Select (1SECS) When timed update is enabled by EAMS, setting this bit for a specific framer allows that framer's counters to latch on the one-second reference from Framer #1.
 - 0 = Use internally generated one-second timer.
 - 1 = Use one-second timer from Framer #1.
- **Bit 6 : Manual Counter Update Select (MCUS)** When manual update mode is enabled with EAMS, this bit can be used to allow the GLCE bit in GCR1 to latch all counters. Useful for synchronously latching counters of multiple framers.
 - 0 = MECU is used to manually latch counters.
 - 1 = GLCE is used to manually latch counters.
- **Bit 5 : Manual Error Counter Update (MECU)** When enabled by ERCNT.3, the changing of this bit from 0 to 1 allows the next clock cycle to load the error counter registers with the latest counts and reset the counters. The user must wait a minimum of 250μs before reading the error count registers to allow for proper update.

Bit 4 : Error Counter Update Select (ECUS)

T1 mode:

- 0 = Update error counters once a second
- 1 = Update error counters every 42ms (336 frames)

E1 mode:

- 0 = Update error counters once a second
- 1 = Update error counters every 62.5ms (500 frames)

Bit 3: Error Accumulation Mode Select (EAMS)

- 0 = ERCNT.4 determines accumulation time (timed update)
- 1 = ERCNT.5 determines accumulation time (manual update)

Bit 2 : PCVCR Fs-Bit Error Report Enable (FSBE)

- 0 = do not report bit errors in Fs-bit position; only Ft bit position
- 1 = report bit errors in Fs-bit position as well as Ft bit position

Bit 1 : Multiframe Out-of-Sync Count Register Function Select (MOSCRF)

- 0 = count errors in the framing bit position
- 1 = count the number of out-of-sync multiframes

Bit 0 : T1 Line-Code Violation Count Register Function Select (LCVCRF)

- 0 = do not count excessive zeros
- 1 = count excessive zeros

11.4.4 T1 Line-Code Violation Count Register (LCVCR)

T1 code violations are defined as bipolar violations (BPVs) or excessive zeros. If the B8ZS mode is set for the receive side, then B8ZS codewords are not counted. This counter is always enabled; it is not disabled during receive loss-of-synchronization (RLOF = 1) conditions. See <u>Table 11-11</u> for details of exactly what the LCVCRs count.

Table 11-11 T1 Line-Code Violation Counting Options

COUNT EXCESSIVE ZEROS?	B8ZS ENABLED?	WHAT IS COUNTED
(ERCNT.0)	(RCR1.6)	IN THE LCVCRs
No	No	BPVs
Yes	No	BPVs + 16 consecutive zeros
No	Yes	BPVs (B8ZS codewords not counted)
Yes	Yes	BPVs + 8 consecutive zeros

Register Name: LCVCR1

Register Description: Line-Code Violation Count Register 1

Address (hex): 0050, 0250, 0450, 0650

Bit #	7	6	5	4	3	2	1	0
Name	LCVC15	LCVC14	LCVC13	LCVC12	LCVC11	LCVC10	LCVC9	LCCV8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Line-Code Violation Counter Bits 15 to 8 (LCVC15 to LCVC8) LCV15 is the MSB of the 16-bit code violation count.

Register Name: LCVCR2

Register Description: Line-Code Violation Count Register 2

Address (hex): 0051, 0251, 0451, 0651

Bit#	7	6	5	4	3	2	1	0
Name	LCVC7	LCVC6	LCVC5	LCVC4	LCVC3	LCVC2	LCVC1	LCVC0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Line-Code Violation Counter Bits 7 to 0 (LCVC7 to LCVC0) LCV0 is the LSB of the 16-bit code violation count

11.4.5 T1 Path-Code Violation Count Register (PCVCR)

The path-code violation count register records either Ft, Fs, or CRC6 errors in T1 frames. When the receive side of a framer is set to operate in the T1 ESF framing mode, PCVCR records errors in the CRC6 codewords. When set to operate in the T1 D4 framing mode, PCVCR counts errors in the Ft framing bit position. Through the ERCNT.2 bit, a framer can be programmed to also report errors in the Fs framing bit position. The PCVCR is disabled during receive loss-of-synchronization (RLOF = 1) conditions. See <u>Table 11-12</u> for a detailed description of exactly what errors the PCVCR counts.

Table 11-12 T1 Path-Code Violation Counting Arrangements

FRAMING MODE	COUNT Fs ERRORS?	WHAT IS COUNTED IN THE PCVCRs
D4	No	Errors in the Ft pattern
D4	Yes	Errors in both the Ft & Fs patterns
ESF	Don't Care	Errors in the CRC6 codewords

Register Name: PCVCR1

Register Description: Path-Code Violation Count Register 1

Address (hex): **0052**, **0252**, **0452**, **0652**

Bit# 6 2 0 PCVC14 PCVC13 PCVC12 PCVC11 PCVC10 PCVC9 PCVC8 Name PCVC15 Default 0 0 0 0 0 0 0 0

Bits 7 to 0 : Path-Code Violation Counter Bits 15 to 8 (PCVC15 to PCVC8) PCVC15 is the MSB of the 16-bit path-code violation count

Register Name: PCVCR2

Register Description: Path-Code Violation Count Register 2

Address (hex): **0053, 0253, 0453, 0653**

Bit# 7 6 5 4 3 2 1 0 PCVC7 PCVC6 PCVC5 PCVC4 PCVC3 PCVC2 PCVC1 PCVC0 Name Default 0 0 0 0 0 0 0

Bits 7 to 0 : Path-Code Violation Counter Bits 7 to 0 (PCVC7 to PCVC0) PCVC0 is the LSB of the 16-bit path-code violation count.

11.4.6 T1 Frames Out-of-Sync Count Register (FOSCR)

The FOSCR is used to count the number of multiframes that the receive synchronizer is out of sync. This number is useful in ESF applications needing to measure the parameters loss-of-frame count (LOFC) and ESF error events as described in AT&T publication TR54016. When the FOSCR is operated in this mode, it is not disabled during receive loss of synchronization (RLOF = 1) conditions. The FOSCR has alternate operating mode whereby it will count either errors in the Ft framing pattern (in the D4 mode) or errors in the FPS framing pattern (in the ESF mode). When the FOSCR is operated in this mode, it is disabled during receive loss-of-synchronization (RLOF = 1) conditions. See Table 11-13 for a detailed description of what the FOSCR is capable of counting.

Table 11-13 T1 Frame Out-of-Sync Counting Arrangements

FRAMING MODE	COUNT MOS OR F-BIT	WHAT IS COUNTED
(RCR1.5) ERRORS (ERCNT.1)		IN THE FOSCRs
D4	MOS	Number of multiframes out of sync
D4	F-Bit	Errors in the Ft pattern
ESF	MOS	Number of multiframes out of sync
ESF	F-Bit	Errors in the FPS pattern

Register Name: FOSCR1

Register Description: Frames Out-of-Sync Count Register 1

Address (hex): **0054, 0254, 0454, 0654**

Bit#	7	6	5	4	3	2	1	0
Name	FOS15	FOS14	FOS13	FOS12	FOS11	FOS10	FOS9	FOS8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Frames Out-of-Sync Counter Bits 15 to 8 (FOS15 to FOS8) FOS15 is the MSB of the 16-bit frames out-of-sync count.

Register Name: FOSCR2

Register Description: Frames Out-of-Sync Count Register 2

Address (hex): **0055**, **0255**, **0455**, **0655**

Bit#	7	6	5	4	3	2	1	0
Name	FOS7	FOS6	FOS5	FOS4	FOS3	FOS2	FOS1	FOS0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Frames Out-of-Sync Counter Bits 7 to 0 (FOS7 to FOS0) FOS0 is the LSB of the 16-bit frames out-of-sync count.

11.4.7 DS0 Monitoring Function

The DS26556 can monitor one DS0 (64kbps) channel in the transmit direction and one DS0 channel in the receive direction at the same time. In the receive direction, the RCM0 to RCM4 bits in the RDS0SEL register need to be properly set and the DS0 channel pointed to by the RCM0 to RCM4 bits will appear in the receive DS0 (RDS0M) register. The RCM4 to RCM0 bits should be programmed with the decimal decode of the appropriate T1 channel. T1 channels 1 through 24 map to register values 0 through 23. For example, if DS0 channel 15 in the receive direction needed to be monitored, then the following values would be programmed into RDS0SEL:

RCM4 = 0 RCM3 = 1 RCM2 = 1 RCM1 = 1 RCM0 = 0

Register Name: RDS0SEL

Register Description: Receive-Channel Monitor Select

Address (hex): **0012**, **0212**, **0412**, **0612**

Bit#	7	6	5	4	3	2	1	0
Name	_	_	_	RCM4	RCM3	RCM2	RCM1	RCM0
Default	0	0	0	0	0	0	0	0

Bits 7 to 5 : Unused. Must be set = 0 for proper operation.

Bits 4 to 0 : Receive-Channel Monitor Bits (RCM4 to RCM0) RCM0 is the LSB of a 5-bit channel select that determines which receive-DS0 channel data appears in the RDS0M register.

Register Name: RDS0M

Register Description: Receive-DS0 Monitor Register

Address (hex): 0060, 0260, 0460, 0660

Bit#	7	6	5	4	3	2	1	0
Name	B1	B2	B3	B4	B5	B6	B7	B8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Receive-DS0 Channel Bits (B1 to B8) Receive-channel data that has been selected by the receive-channel monitor select register. B8 is the LSB of the DS0 channel (last bit to be received).

11.4.8 Receive Signaling Registers

Register Name: RSIGC

Register Description: Receive Signaling Control Register

Address (hex): 0013, 0213, 0413, 0613

Bit#	7	6	5	4	3	2	1	0
Name	_	_	_	RFSA1	_	RSFF	RSFE	RSIE
Default	0	0	0	0	0	0	0	0

Bits 7 to 5: Unused. Must be set = 0 for proper operation.

Bit 4: Receive-Force Signaling All Ones (RFSA1)

0 = do not force robbed bit signaling to all ones

1 = force signaling bits to all ones on a per-channel basis according to the RSAOI1-RSAOI3 registers

Bit 3: Unused. Must be set = 0 for proper operation.

Bit 2: Receive-Signaling Force Freeze (RSFF). Freezes receive-side signaling at RSIG (and RSER if receive-signaling reinsertion is enabled); overrides receive-freeze enable (RFE).

0 = do not force a freeze event

1 = force a freeze event

Bit 1: Receive-Signaling Freeze Enable (RSFE)

0 = no freezing of receive-signaling data occurs

1 = allow freezing of receive-signaling data at RSIG (and RSER if receive-signaling reinsertion is enabled)

Bit 0 : Receive-Signaling Integration Enable (RSIE)

0 = signaling changes of state reported on any change in selected channels

1 = signaling must be stable for three multiframes for a change of state to be reported

Register Name: RSI1, RSI2, RSI3, RSI4

Register Description: **Receive-Signaling Reinsertion Enable Registers**

Address (hex): 00C8, 02C8, 04C8, 06C8

Setting any of the CH1 through CH24 bits in the RSI1 through RSI3 registers causes signaling data to be reinserted for the associated channel. RSI4 is used for 2.048MHz backplane operation.

(MSB)							(LSB)	
CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	RSI1
CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	RSI2
CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	RSI3
CH32	CH31	CH30	CH29	CH28	CH27	CH26	CH25	RSI4*

Register Name: RSAOI1, RSAOI2, RSAOI3,

Register Description: **Receive-Signaling All-Ones Insertion Registers**

Address (hex): 0038 to 003A, 0238 to 023A, 0438 to 043A, 0638 to 063A

Setting any of the CH1 through CH24 bits in the RSAOI1 through RSAOI3 registers causes signaling data to be replaced with logic ones as received at the backplane.

]	(LSB)							(MSB)
RSA0I1	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8
RSA012	CH9	CH10	CH11	CH12	CH13	CH14	CH15	CH16
RSA0I3	CH17	CH18	CH19	CH20	CH21	CH22	CH23	CH24

Register Name: RS1 to RS12

Register Description: Receive Signaling Registers

Address (hex): 0040 to 004B, 0240 to 024B, 0440 to 044B, 0640 to 064B

In the ESF framing mode, there can be up to four signaling bits per channel (A, B, C, and D). In the D4 framing mode, there are only two signaling bits per channel (A and B). In the D4 framing mode, the framer repeats the A and B signaling data in the C and D bit locations. Therefore, when the framer is operated in D4 framing mode, the user needs to retrieve the signaling bits every 1.5ms as opposed to 3ms for ESF mode. The receive-signaling registers are frozen and not updated during a loss-of-sync condition. They contain the most recent signaling information before the OOF occurred.

								_
(MSB)							(LSB)	
CH1-A	CH1-B	CH1-C	CH1-D	CH13-A	CH13-B	CH13-C	CH13-D	RS1
CH2-A	CH2-B	CH2-C	CH2-D	CH14-A	CH14-B	CH14-C	CH14-D	RS2
CH3-A	CH3-B	CH3-C	CH3-D	CH15-A	CH15-B	CH15-C	CH15-D	RS3
CH4-A	CH4-B	CH4-C	CH4-D	CH16-A	CH16-B	CH16-C	CH16-D	RS4
CH5-A	CH5-B	CH5-C	CH5-D	CH17-A	CH17-B	CH17-C	CH17-D	RS5
CH6-A	CH6-B	CH6-C	CH6-D	CH18-A	CH18-B	CH18-C	CH18-D	RS6
CH7-A	CH7-B	CH7-C	CH7-D	CH19-A	CH19-B	CH19-C	CH19-D	RS7
CH8-A	CH8-B	CH8-C	CH8-D	CH20-A	CH20-B	CH20-C	CH20-D	RS8
CH9-A	CH9-B	CH9-C	CH9-D	CH21-A	CH21-B	CH21-C	CH21-D	RS9
CH10-A	CH10-B	CH10-C	CH10-D	CH22-A	CH22-B	CH22-C	CH22-D	RS10
CH11-A	CH11-B	CH11-C	CH11-D	CH23-A	CH23-B	CH23-C	CH23-D	RS11
CH12-A	CH12-B	CH12-C	CH12-D	CH24-A	CH24-B	CH24-C	CH24-D	RS12

Register Name: RSS1, RSS2, RSS3

Register Description: Receive Signaling Status Registers

Address (hex): 0098 to 009A, 0298 to 029A, 0498, to 049A

When a channel's signaling data changes state, the respective bit in registers RSS1–RSS3 is set and latched. The RSCOS bit (RLSR4.3) is set if the channel was also enabled by setting the appropriate bit in RSCSE1–3. The INT signal goes low if enabled by the interrupt mask bit RIM4.3.

Bit #	7	6	5	4	3	2	1	0	
Name	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	RSS1
Name	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	RSS2
Name	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	RSS3
Default	0	0	0	0	0	0	0	0	

Note: Status bits in this register are latched.

Register Name: RSCSE1, RSCSE2, RSCSE3

Register Description: Receive-Signaling Change-of-State Enable 00A8 to 00AA, 02A8 to 02AA, 04A8, to 04AA

Setting any of the CH1 through CH24 bits in the RSS1 through RSS3 registers cause RSCOS (RLSR4.3) to be set when that channel's signaling data changes state.

Bit #	7	6	5	4	3	2	1	0	
Name	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	RSCSE1
Name	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	RSCSE2
Name	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	RSCSE3
Default	0	0	0	0	0	0	0	0	

11.4.9 T1 Receive Per-Channel Idle Code Insertion

Channel data can be replaced by an idle code on a per-channel basis in the transmit and receive directions. Twenty-four receive idle definition registers (RIDR1–RIDR24) are provided to set the 8-bit idle code for each channel. The receive-channel idle code-enable registers (RCICE1–3) are used to enable idle code replacement on a per-channel basis.

The receive-channel idle code-enable registers (RCICE1/2/3) are used to determine which of the 24 T1 channels from the T1 line to the backplane should be overwritten with the code placed in the receive idle-code definition register.

Register Name: RIDR1 to RIDR24

Register Description: Receive Idle-Code Definition Registers 1 to 24

Address (hex): 0020 to 0037, 0220 TO 0237, 0420 to 0437, 0620 to 0637

Bit#	7	6	5	4	3	2	1	0
Name	C7	C6	C5	C4	C3	C2	C1	C0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Per-Channel Idle Code Bits (C7 to C0) C0 is the LSB of the code (this bit is transmitted last). Address 20H is for channel 1: address 37H is for channel 24.

Register Name: RCICE1, RCICE2, RCICE3

Register Description: Receive-Channel Idle Code-Enable Registers

Address (hex): 00D0 to 00D2, 02D0 to 02D2, 04D0 to 04D2, 06D0 to 06D2

Bit#	7	6	5	4	3	2	1	0
Name	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1
Name	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9
Name	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17
Default	0	0	0	0	0	0	0	0

RCICE1 RCICE2 RCICE3

Bits 7 to 0 : Receive Channels 24 to 1 Code Insertion Control Bits (CH24 to CH1)

0 = do not insert data from the idle code array into the receive data stream

1 = insert data from the idle code array into the receive data stream

11.4.10 T1 Receive Channel Mark Registers

The Receive Channel Mark Registers (RCMR1/RCMR2/RCMR3/RCMR4) control the mapping of channels to the receive cell/packet interface and the RCHMRK pin. The RCHMRK signal is used internally to select which channels will be mapped to the receive cell/packet interface. Externally, the signal can be used to multiplex TDM data out of channels not used by the receive cell/packet interface. When the appropriate bits are set to 1, the receive cell/packet function is mapped to that channel and externally the RCHMRK pin is held high during the entire corresponding channel time. In T1 mode, only RCMR1 to RCMR3 and the LSB of RCMR4 are used.

Register Name: RCMR1, RCMR2, RCMR3

Register Description: Receive-Channel Mark Registers 1 to 3

Address (hex): 00C4 to 00C6, 02C4 to 02C6, 04C4 to 04C6, 06C4 to 06C6

	(LSB)							(MSB)
RCMR1	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8
RCMR2	CH9	CH10	CH11	CH12	CH13	CH14	CH15	CH16
RCMR3	CH17	CH18	CH19	CH20	CH21	CH22	CH23	CH24

Bits 7 to 0 : Receive Channels 24 to 1 Channel Mark Control Bits (CH24 to CH1)

0 = force the RCHMRK pin to remain low during this channel time

1 = force the RCHMRK pin high during this channel time

Register Name: RCMR4

Register Description: Receive-Channel Mark Register 4

Address (hex): 00C7, 02C7, 04C7, 06C7

(MSB)				(LSB)	
				RFBIT	RCMR4

Bits 7 to 1 : Unused. Must be set = 0 for proper operation.

Bit 0 : Receive F Bit (RFBIT)

RCMR4.0 = 0, RCHMRK low during the F-bit RCMR4.0 = 1, RCHMRK high during the F-bit

Register Name: RGCCR

Register Description: Receive Gapped Clock Control Register

Address (hex): 0085, 0285, 0485, 0685

Bit#	7	6	5	4	3	2	1	0
Name	RCCF	RGCE	-	-	=	-	=	=
Default	0	0	0	0	0	0	0	0

Bit 7 : Receive Channel Clock Format (RCCF) This bit controls the function of the RCHMRK pin went it is in the channel clock mode and the RGCCR.6 bit is set = 1. Channel clock mode is enabled in the RCHMRK Pin Function Select (RPFS) register.

0 = 64kbps, clock output during all 8 bits

1 = 56kbps, clock output during 7 MSBs

Bit 6:/ Receive Gapped Clock Enable (RGCE) This bit controls the function of the RCHMRK pin went it is in the channel clock mode. Channel clock mode is enabled in the RCHMRK Pin Function Select (RPFS) register.

0 = RCHMRK outputs a pulse during the LSB of each channel time.

1 = RCHMRK outputs a gapped bit clock as selected by the RGCCS1 through RGCCC4 registers.

Bits 5 to 0 : Unused. Must be set = 0 for proper operation.

11.4.11 Receive Fractional T1 Support (Gapped-Clock Mode)

Register Name: RGCCS1, RGCCS2, RGCCS3, RGCCS4

Register Description: Receive-Gapped-Clock Channel-Select Registers

Address (hex): 00CC to 00CF, 02CC to 02CF, 04CC to 04CF, 06CC to 06CF

(MSB)							(LSB)	
CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	RGCCS1
CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	RGCCS2
CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	RGCCS3
CH32	CH31	CH30	CH29	CH28	CH27	CH26	CH25/F-Bit	RGCCS4

Bits 7 to 0 : Receive Channels 1 to 32 Gapped-Clock Channel Select Bits (CH1 to CH32) These bits control the RCHMRK pin when it is in the channel clock mode. Channel clock mode is enabled in the RCHMRK Pin Function Select (RPFS) register.

0 = no clock is present on RCHMRK during this channel time

1 = force a clock on RCHMRK during this channel time. The clock will be synchronous with RCLK.

Note that RGCCS4 has two functions:

When 2.048MHz backplane mode is selected, this register allows the user to enable the gapped clock on RCHMRK for any of the 32 possible backplane channels.

When 1.544MHz backplane mode is selected, the LSB of this register determines whether or not a clock is generated on RCHMRK during the F-bit time:

RGCCS4.0 = 0: do not generate a clock during the F-bit

RGCCS4.0 = 1: generate a clock during the F-bit

In this mode, RGCCS4.1—RGCCS4.7 should be set to 0.

11.4.12 Receive T1 Bit-Oriented Code (BOC) Controller

Register Name: RBOCC

Register Description: Receive BOC Control Register

Address (hex): 0015, 0215, 0415, 0615

Bit#	7	6	5	4	3	2	1	0	
Name	RBR	_	RBD1	RBD0		RBF1	RBF0	_	
Default	0	0	0	0	0	0	0	0	l

Bit 7 :Receive-BOC Reset (RBR) A 0-to-1 transition resets the BOC circuitry. Must be cleared and set again for a subsequent reset. Modifications to the RBF0, RBF1, RBD0, and RBD1 bits are not applied to the BOC controller until a BOC reset has been completed.

Bit 6: Unused. Must be set = 0 for proper operation.

Bits 5 to 4: Receive-BOC-Disintegration Bits (RBD0, RBD1) The BOC Disintegration filter sets the number of message bits that must be received without a valid BOC in order to set the BC bit indicating that a valid BOC is no longer being received.

RBD1	RBD0	Consecutive Message Bits for BOC Clear Identification
0	0	16
0	1	32
1	0	48
1	1	64 (Note 1)

Bit 3: Unused. Must be set = 0 for proper operation.

Bits 2 to 1 : Receive-BOC-Filter Bits (RBF0, RBF1) The BOC filter sets the number of consecutive patterns that must be received without error prior to an indication of a valid message.

RBF1	RBF0	Consecutive BOC Codes for Valid Sequence Identification
0	0	None
0	1	3
1	0	5
1	1	7 (Note 1)

Bit 0 : Unused. Must be set = 0 for proper operation.

Note 1: The DS26556's BOC controller does not integrate and disintegrate concurrently. Therefore, if the maximum integration time and the maximum disintegration time are used together, BOC messages that repeat fewer than 11 times may not be detected.

Register Name: RBOC

Register Description: Receive BOC Register Address (hex): Receive BOC Register 0063, 0263, 0463, 0663

Bit #	7	6	5	4	3	2	1	0
Name	_	_	RBOC5	RBOC4	RBOC3	RBOC2	RBOC1	RBOC0
Default	0	0	0	0	0	0	0	0

The RBOC Register always contains the last valid BOC received.

Bits 7, 6: Unused

Bit 5: BOC Bit 5 (RBOC5)

Bit 4: BOC Bit 4 (RBOC4)

Bit 3: BOC Bit 3 (RBOC3)

Bit 2: BOC Bit 2 (RBOC2)

Bit 1: BOC Bit 1 (RBOC1)

Bit 0: BOC Bit 0 (RBOC0)

11.4.13 Receive SLC-96 Operation

Register Name: RSLC1, RSLC2, RSLC3

Register Description: Receive SLC96 Data Link Registers

Address (hex): 0064 to 0066, 0264 to 0266, 0464 to 0466, 0664 to 0666

	(MSB)							(LSB)	
Ī	C8	C7	C6	C5	C4	C3	C2	C1	RSLC1
	M2	M1	S = 0	S = 1	S = 0	C11	C10	C9	RSLC2
	S = 1	S4	S3	S2	S1	A2	A1	М3	RSLC3

11.4.14 Receive FDL

Register Name: RFDL

Register Description: Receive FDL Register Address (hex): Receive FDL Register 0062, 0262, 0462, 0662

Bit#	7	6	5	4	3	2	1	0
Name	RFDL7	RFDL6	RFDL5	RFDL4	RFDL3	RFDL2	RFDL1	RFDL0
Default	0	0	0	0	0	0	0	0

The receive FDL register (RFDL) reports the incoming facility data link (FDL) or the incoming Fs bits. The LSB is received first. In D4 framing mode, RFDL updates on multiframe boundaries and reports the six Fs bits in RFDL0–RFDL5.

Bit 7: Receive FDL Bit 7 (RFDL7) MSB of the received FDL code.

Bit 6: Receive FDL Bit 6 (RFDL6)

Bit 5: Receive FDL Bit 5 (RFDL5)

Bit 4: Receive FDL Bit 4 (RFDL4)

Bit 3: Receive FDL Bit 3 (RFDL3)

Bit 2: Receive FDL Bit 2 (RFDL2)

Bit 1: Receive FDL Bit 1 (RFDL1)

Bit 0 : Receive FDL Bit 0 (RFDL0) LSB of the received FDL code.

11.4.15 Programmable In-Band Loop-Code Detection

Register Name: RIBCC

Register Description: Receive In-Band Code Control Register

Address (hex): 0082, 0282, 0482, 0682

Bit #	7	6	5	4	3	2	1	0
Name	_	_	RUP2	RUP1	RUP0	RDN2	RDN1	RDN0
Default	0	0	0	0	0	0	0	0

Bits 7 & 6 : Unused. Must be set = 0 for proper operation.

Bits 5 to 3 : Receive-Up-Code Length Definition Bits (RUP0 to RUP2)

RUP2	RUP1	RUP0	Length Selected (bits)
0	0	0	1
0	0	1	2
0	1	0	3
0	1	1	4
1	0	0	5
1	0	1	6
1	1	0	7
1	1	1	8 / 16

Bits 2 to 0 : Receive-Down-Code Length Definition Bits (RDN0 to RDN2)

RDN2	RDN1	RDN0	Length Selected (bits)
0	0	0	1
0	0	1	2
0	1	0	3
0	1	1	4
1	0	0	5
1	0	1	6
1	1	0	7
1	1	1	8 / 16

Register Name: RUPCD1

Register Description: Receive-Up Code-Definition Register 1

Address (hex): 00AC, 02AC, 04AC, 06AC

Bit#	7	6	5	4	3	2	1	0
Name	C7	C6	C5	C4	C3	C2	C1	C0
Default	0	0	0	0	0	0	0	0

Note: Writing this register resets the detector's integration period.

Bit 7: Receive-Up Code-Definition Bit 7 (C7) First bit of the repeating pattern.

Bit 6: Receive-Up Code-Definition Bit 6 (C6) A don't care if a 1-bit length is selected.

Bit 5: Receive-Up Code-Definition Bit 5 (C5) A don't care if a 1- or 2-bit length is selected.

Bit 4: Receive-Up Code-Definition Bit 4 (C4) A don't care if a 1- to 3-bit length is selected.

Bit 3: Receive-Up Code-Definition Bit 3 (C3) A don't care if a 1- to 4-bit length is selected.

Bit 2: Receive-Up Code-Definition Bit 2 (C2) A don't care if a 1- to 5-bit length is selected.

Bit 1 : Receive-Up Code-Definition Bit 1 (C1) A don't care if a 1- to 6-bit length is selected.

Bit 0 : Receive-Up Code-Definition Bit 0 (C0) A don't care if a 1- to 7-bit length is selected.

Register Name: RUPCD2

Register Description: Receive-Up Code-Definition Register 2

Address (hex): **00AD**, **02AD**, **04AD**, **06AD**

Bit #	7	6	5	4	3	2	1	0
Name	C7	C6	C5	C4	C3	C2	C1	C0
Default	0	0	0	0	0	0	0	0

Bit 7: Receive-Up Code-Definition Bit 7 (C7) A don't care if a 1- to 7-bit length is selected.

Bit 6: Receive-Up Code-Definition Bit 6 (C6) A don't care if a 1- to 7-bit length is selected.

Bit 5: Receive-Up Code-Definition Bit 5 (C5) A don't care if a 1- to 7-bit length is selected.

Bit 4: Receive-Up Code-Definition Bit 4 (C4) A don't care if a 1- to 7-bit length is selected.

Bit 3 : Receive-Up Code-Definition Bit 3 (C3) A don't care if a 1- to 7-bit length is selected.

Bit 2: Receive-Up Code-Definition Bit 2 (C2) A don't care if a 1- to 7-bit length is selected.

Bit 1: Receive-Up Code-Definition Bit 1 (C1) A don't care if a 1- to 7-bit length is selected.

Bit 0 : Receive-Up Code-Definition Bit 0 (C0) A don't care if a 1- to 7-bit length is selected.

Register Name: RDNCD1

Register Description: Receive-Down Code-Definition Register 1

Address (hex): **00AE**, **02AE**, **04AE**, **06AE**

Bit#	7	6	5	4	3	2	1	0
Name	C7	C6	C5	C4	C3	C2	C1	C0
Default	0	0	0	0	0	0	0	0

Note: Writing this register resets the detector's integration period.

Bit 7: Receive-Down Code-Definition Bit 7 (C7) First bit of the repeating pattern.

Bit 6: Receive-Down Code-Definition Bit 6 (C6) A don't care if a 1-bit length is selected.

Bit 5 : Receive-Down Code-Definition Bit 5 (C5) A don't care if a 1- or 2-bit length is selected.

Bit 4: Receive-Down Code-Definition Bit 4 (C4) A don't care if a 1- to 3-bit length is selected.

Bit 3: Receive-Down Code-Definition Bit 3 (C3) A don't care if a 1- to 4-bit length is selected.

Bit 2: Receive-Down Code-Definition Bit 2 (C2) A don't care if a 1- to 5-bit length is selected.

Bit 1 : Receive-Down Code-Definition Bit 1 (C1) A don't care if a 1- to 6-bit length is selected.

Bit 0: Receive-Down Code-Definition Bit 0 (C0) A don't care if a 1- to 7-bit length is selected.

Register Name: RDNCD2

Register Description: Receive-Down Code-Definition Register 2

Address (hex): **00AF**, **02AF**, **04AF**, **06AF**

Bit#	7	6	5	4	3	2	1	0
Name	C7	C6	C5	C4	C3	C2	C1	C0
Default	0	0	0	0	0	0	0	0

Bit 7: Receive-Down Code-Definition Bit 7 (C7) A don't care if a 1- to 7-bit length is selected.

Bit 6 : Receive-Down Code-Definition Bit 6 (C6) A don't care if a 1- to 7-bit length is selected.

Bit 5: Receive-Down Code-Definition Bit 5 (C5) A don't care if a 1- to 7-bit length is selected.

Bit 4: Receive-Down Code-Definition Bit 4 (C4) A don't care if a 1- to 7-bit length is selected.

Bit 3: Receive-Down Code-Definition Bit 3 (C3) A don't care if a 1- to 7-bit length is selected.

Bit 2: Receive-Down Code-Definition Bit 2 (C2) A don't care if a 1- to 7-bit length is selected.

Bit 1 : Receive-Down Code-Definition Bit 1 (C1) A don't care if a 1- to 7-bit length is selected.

Bit 0 : Receive-Down Code Definition Bit 0 (C0) A don't care if a 1- to 7-bit length is selected.

Register Name: RSCC

Register Description: In-Band Receive-Spare Control Register

Address (hex):

Bit #	7	6	5	4	3	2	1	0
Name		_	_	_		RSC2	RSC1	RSC0
Default	0	0	0	0	0	0	0	0

Bits 2 to 0 : Receive-Spare Code-Length Definition Bits (RSC0 to RSC2)

RSC2	RSC1	RSC0	Length Selected (bits)
0	0	0	1
0	0	1	2
0	1	0	3
0	1	1	4
1	0	0	5
1	0	1	6
1	1	0	7
1	1	1	8 / 16

Bits 7 to 3 : Unused. Must be set = 0 for proper operation.

Register Name: RSCD1

Register Description: Receive-Spare Code-Definition Register 1

Address (hex): 009C, 029C, 049C, 069C

Bit#	7	6	5	4	3	2	1	0
Name	C7	C6	C5	C4	C3	C2	C1	C0
Default	0	0	0	0	0	0	0	0

Note: Writing this register resets the detector's integration period.

Bit 7: Receive-Spare Code-Definition Bit 7 (C7) First bit of the repeating pattern.

Bit 6: Receive-Spare Code-Definition Bit 6 (C6) A don't care if a 1-bit length is selected.

Bit 5: Receive-Spare Code-Definition Bit 5 (C5) A don't care if a 1- or 2-bit length is selected.

Bit 4: Receive-Spare Code-Definition Bit 4 (C4) A don't care if a 1- to 3-bit length is selected.

Bit 3: Receive-Spare Code-Definition Bit 3 (C3) A don't care if a 1- to 4-bit length is selected.

Bit 2: Receive-Spare Code-Definition Bit 2 (C2) A don't care if a 1- to 5-bit length is selected.

Bit 1 : Receive-Spare Code-Definition Bit 1 (C1) A don't care if a 1- to 6-bit length is selected.

Bit 0 : Receive-Spare Code-Definition Bit 0 (C0) A don't care if a 1- to 7-bit length is selected.

Register Name: RSCD2

Register Description: Receive-Spare Code-Definition Register 2

Address (hex): 009D, 029D, 049D, 069D

Bit#	7	6	5	4	3	2	1	0
Name	C7	C6	C5	C4	C3	C2	C1	C0
Default	0	0	0	0	0	0	0	0

Bit 7: Receive-Spare Code-Definition Bit 7 (C7) A don't care if a 1- to 7-bit length is selected.

Bit 6: Receive-Spare Code-Definition Bit 6 (C6) A don't care if a 1- to 7-bit length is selected.

Bit 5: Receive-Spare Code-Definition Bit 5 (C5) A don't care if a 1- to 7-bit length is selected.

Bit 4: Receive-Spare Code-Definition Bit 4 (C4) A don't care if a 1- to 7-bit length is selected.

Bit 3 : Receive-Spare Code-Definition Bit 3 (C3) A don't care if a 1- to 7-bit length is selected.

Bit 2 : Receive-Spare Code-Definition Bit 2 (C2) A don't care if a 1- to 7-bit length is selected.

Bit 1 : Receive-Spare Code-Definition Bit 1 (C1) A don't care if a 1- to 7-bit length is selected.

Bit 0 : Receive-Spare Code-Definition Bit 0 (C0) A don't care if a 1- to 7-bit length is selected.

11.4.16 Receive HDLC Controller

Register Name: RHC

Register Description: Receive HDLC Control Register

Address (hex): 0010, 0210, 0410, 0610

Bit #	7	6	5	4	3	2	1	0
Name	RCRCD	RHR	RHMS	RHCS4	RHCS3	RHCS2	RHCS1	RHCS0
Default	0	0	0	0	0	0	0	0

Bit 7: Receive CRC16 Display (RCRCD)

0 = Do not write received CRC16 code to FIFO

1= Write received CRC16 code to FIFO after last octet of packet

Bit 6 : Receive HDLC Reset (RHR) Resets the receive-HDLC controller and flushes the receive FIFO. Must be cleared and set again for a subsequent reset.

0 = Normal operation

1 = Reset receive HDLC controller and flush the receive FIFO

Bit 5: Receive HDLC Mapping Select (RHMS)

0 = Receive HDLC assigned to channels

1 = Receive HDLC assigned to FDL (T1 mode), Sa bits (E1 mode)

Bit 4 to Bit 0 : Receive HDLC Channel Select (RHCSx) These bits determine which DS0 is mapped to the HDLC controller when enabled with RHMS = 0. RHCS0 to RHCS4 = all zeros selects channel 1, RHCS0 to RHCS4 = all ones selects channel 32 (E1)

Register Name: RHBSE

Register Description: Receive HDLC Bit Suppress Register

Address (hex): **0011**, **0211**, **0411**, **0611**

Bit#	7	6	5	4	3	2	1	0
Name	BSE8	BSE7	BSE6	BSE5	BSE4	BSE3	BSE2	BSE1
Default	0	0	0	0	0	0	0	0

Bit 7: Receive Channel Bit 8 Suppress (BSE8) MSB of the channel. Set to one to stop this bit from being used.

Bit 6: Receive Channel Bit 7 Suppress (BSE7) Set to one to stop this bit from being used.

Bit 5 : Receive Channel Bit 6 Suppress (BSE6) Set to one to stop this bit from being used.

Bit 4: Receive Channel Bit 5 Suppress (BSE5) Set to one to stop this bit from being used.

Bit 3: Receive Channel Bit 4 Suppress (BSE4) Set to one to stop this bit from being used.

Bit 2: Receive Channel Bit 3 Suppress (BSE3) Set to one to stop this bit from being used.

Bit 1: Receive Channel Bit 2 Suppress (BSE2) Set to one to stop this bit from being used.

Bit 0 : Receive Channel Bit 1 Suppress (BSE1) LSB of the channel. Set to one to stop this bit from being used.

11.4.16.1 Receive HDLC FIFO Control

Control of the receive FIFO is accomplished through the receive-HDLC FIFO control (RHFC). The FIFO control register sets the watermarks for the receive FIFO.

When the receive FIFO fills above the high watermark, the RHWM bit (RRTS5.1) is set. RHWM is a real-time bit and remains set as long as the receive FIFO's write pointer is above the watermark. If enabled, this condition can also cause an interrupt through the $\overline{\text{INT}}$ pin.

Register Name: RHFC

Register Description: Receive HDLC FIFO Control Register

Address (hex): 0087, 0287, 0487, 0687

Bit#	7	6	5	4	3	2	1	0
Name		_				_	RFHWM1	RFHWM0
Default	0	0	0	0	0	0	0	0

Bits 7 to 2 : Unused. Must be set = 0 for proper operation.

Bits 1 to 0 : Receive FIFO High Watermark Select (RFHWM0 to RFHWM1)

RFHWM1	RFHWM0	Receive FIFO Watermark (bytes)
0	0	4
0	1	16
1	0	32
1	1	48

11.4.16.2 Receive HDLC Packet Bytes Available

The lower 6 bits of the receive-packet-bytes-available register indicates the number of bytes (0 through 64) that can be read from the receive FIFO. The value indicated by this register informs the host as to how many bytes can be read from the receive FIFO without going past the end of a message. This value refers to one of four possibilities: the first part of a packet, the continuation of a packet, the last part of a packet, or a complete packet. After reading the number of bytes indicated by this register, the host then checks the HDLC status registers for detailed message status.

If the value in the RHPBA register refers to the beginning portion of a message or continuation of a message, then the MSB of the RHPBA register returns a 1. This indicates that the host may safely read the number of bytes returned by the lower 6 bits of the RHPBA register, but there is no need to check the information register since the packet has not yet terminated (successfully or otherwise).

Register Name: RHPBA

Register Description: Receive HDLC Packet Bytes Available Register

Address (hex): 00B5, 02B5, 04B5, 06B5

Bit#	7	6	5	4	3	2	1	0
Name	MS	RPBA6	RPBA5	RPBA4	RPBA3	RPBA2	RPBA1	RPBA0
Default	0	0	0	0	0	0	0	0

Bit 7 : Message Status (MS)

0 = Bytes indicated by RPBA0 through RPBA6 are the end of a message. Host must check the HDLC Status register for details.

1 = Bytes indicated by RPBA0 through RPBA6 are the beginning or continuation of a message. The host does not need to check the HDLC status.

Bits 6-0: Receive FIFO Packet Bytes Available Count (RPBA0 to RPBA6) RPBA0 is the LSB.

Register Name: RHF

Register Description: Receive HDLC FIFO Register Address (hex): 00B6, 02B6, 04B6, 06B6

Bit #	7	6	5	4	3	2	1	0
Name	RHD7	RHD6	RHD5	RHD4	RHD3	RHD2	RHD1	RHD0
Default	0	0	0	0	0	0	0	0

Bit 7: Receive HDLC Data Bit 7 (RHD7) MSB of a HDLC packet data byte.

Bit 6 : Receive HDLC Data Bit 6 (RHD6)

Bit 5: Receive HDLC Data Bit 5 (RHD5)

Bit 4: Receive HDLC Data Bit 4 (RHD4)

Bit 3 : Receive HDLC Data Bit 3 (RHD3)

Bit 2 : Receive HDLC Data Bit 2 (RHD2)

Bit 1 : Receive HDLC Data Bit 1 (RHD1)

Bit 0 : Receive HDLC Data Bit 0 (RHD0) LSB of a HDLC packet data byte.

11.4.16.3 HDLC Status and Information

RRTS5 and RLS5 provide status information for the receive HDLC controller. When a particular event has occurred (or is occurring), the appropriate bit in one of these registers is set to 1. With the latched bits, when an event occurs and a bit is set to 1, it remains set until the user reads that bit. The bit is cleared when it is read and it is not set again until the event has occurred again. The real-time bits report the current instantaneous conditions that are occurring and the history of these bits is not latched.

Like the other latched-status registers, the user follows a read of the status bit with a write. The byte written to the register informs the device which of the latched bits the user wishes to clear (the real-time bits are not affected by writing to the status register). The user writes a byte to one of these registers, with a 1 in the bit positions the user wishes to clear and a zero in the bit positions the user wishes not to clear.

The HDLC status register RLS5 can initiate a hardware interrupt through the $\overline{\rm INT}$ output signal. Each of the events in this register can be either masked or unmasked from the interrupt pin through the receive-HDLC interrupt-mask register (RIM5). Interrupts force the $\overline{\rm INT}$ signal low when the event occurs. The $\overline{\rm INT}$ pin is allowed to return high (if no other interrupts are present) when the user reads the event bit that caused the interrupt to occur.

Register Name: RRTS5

Register Description: Receive Real-Time Status Register 5 (HDLC)

Address (hex): 00B4, 02B4, 04B4, 06B4

Bit#	7	6	5	4	3	2	1	0
Name	_	PS2	PS1	PS0	_	_	RHWM	RNE
Default	0	0	0	0	0	0	0	0

Note: All bits in this register are real-time.

Bit 7: Unused.

Bits 6 to 4: Receive Packet Status (PS2 to PS0) These are real-time bits indicating the status as of the last read of the receive FIFO.

PS2	PS1	PS0	PACKET STATUS
0	0	0	In Progress: End of message has not yet been reached.
0	0	1	Packet OK: Packet ended with correct CRC codeword.
0	1	0	CRC Error: A closing flag was detected, preceded by a corrupt CRC codeword.
0	1	1	Abort: Packet ended because an abort signal was detected (seven or more ones in a row).
1	0	0	Overrun: HDLC controller terminated reception of packet because receive FIFO is full.

Bits 3 & 2: Unused.

Bit 1 : Receive-FIFO Above High-Watermark Condition (RHWM) Set when the receive 64-byte FIFO fills beyond the high watermark as defined by the receive-HDLC FIFO control register (RHFC). This is a real-time bit.

Bit 0 : Receive-FIFO Not Empty Condition (RNE) Set when the receive 64-byte FIFO has at least one byte available for a read. This is a real-time bit.

Register Name: RLS5

Register Description: Receive Latched Status Register 5 (HDLC)

Address (hex): 0094, 0295, 0494, 0694

Bit#	7	6	5	4	3	2	1	0
Name			ROVR	RHOBT	RPE	RPS	RHWMS	RNES
Default	0	0	0	0	0	0	0	0

Note: All bits in this register are latched and can cause interrupts.

Bits 7 & 6: Unused.

Bit 5: Receive FIFO Overrun (ROVR) Set when the receive HDLC controller has terminated packet reception because the FIFO buffer is full.

Bit 4 : Receive HDLC Opening Byte Event (RHOBT) Set when the next byte available in the receive FIFO is the first byte of a message.

Bit 3 : Receive Packet End Event (RPE) Set when the HDLC controller detects either the finish of a valid message (i.e., CRC check complete) or when the controller has experienced a message fault such as a CRC checking error, or an overrun condition, or an abort has been seen. This is a latched bit and is cleared when read.

Bit 2: Receive Packet Start Event (RPS) Set when the HDLC controller detects an opening byte. This is a latched bit and will be cleared when read.

Bit 1: Receive-FIFO Above High-Watermark Set Event (RHWMS) Set when the receive-64-byte FIFO crosses the high watermark as defined by the receive HDLC FIFO control register (RHFC). Rising edge detect of RHWM.

Bit 0 : Receive-FIFO Not Empty Set Event (RNES) Set when the receive FIFO has transitioned from 'empty' to 'not-empty' (at least one byte has been put into the FIFO). Rising edge detect of RNE.

Register Name: RIM5

Register Description: Receive Interrupt Mask 5 (HDLC)

Address (hex): 00A4, 02A4, 04A4, 06A4

Bit#	7	6	5	4	3	2	1	0
Name	_	_	ROVR	RHOBT	RPE	RPS	RHWMS	RNES
Default	0	0	0	0	0	0	0	0

Bits 7 & 6 : Unused. Must be set = 0 for proper operation.

Bit 5 : Receive-FIFO Overrun (ROVR)

0 = interrupt masked1 = interrupt enabled

Bit 4: Receive-HDLC Opening-Byte Event (RHOBT)

0 = interrupt masked

1 = interrupt enabled

Bit 3: Receive-Packet-End Event (RPE)

0 = interrupt masked

1 = interrupt enabled

Bit 2 : Receive-Packet-Start Event (RPS)

0 = interrupt masked

1 = interrupt enabled

Bit 1 : Receive-FIFO Above High-Watermark Set Event (RHWMS)

0 = interrupt masked

1 = interrupt enabled

Bit 0 : Receive-FIFO Not Empty Set Event (RNES)

0 = interrupt masked

1 = interrupt enabled

11.4.17 Receive BERT

Data from the DS26556 receive framer can be ported to the on-chip BERT by using the registers described below. Either framed or unframed data can be provided to the BERT, controlled by the RBFUS bit in the RBICR. Any single DS0 or combination of DS0s can be extracted from the data stream up to the entire T1 payload, as controlled by the RBCS registers.

Note that one BERT resource is shared among all 8 framers. Therefore, the RBEN bit should be set for only one framer at a time. If multiple framers have the RBEN bit set, the lower number framer is assigned the resource. Details concerning the BERT can be found in Section 13.

Register Name: RBICR

Register Description: Receive BERT Interface Control Register

Address (hex): 008A, 028A, 048A, 068A

Bit#	7	6	5	4	3	2	1	0
Name	_		_	_	_	RBDC	RBFUS	RBEN
Default	0	0	0	0	0	0	0	0

Bits 7 to 3 : Unused. Must be set = 0 for proper operation.

Bit 2 : Receive BERT Direction Control (RBDC)

- 0 = Receive Path: The BERT receives data from the network side via RPOS and RNEG.
- 1 = Backplane: The BERT receives data from the system backplane via the TSER pin.

Bit 1: Receive BERT Framed/Unframed Select (RBFUS)

- 0 = The framer does **not** provide data from the F-bit position (framed).
- 1 = The framer clocks data from the F-bit position (unframed).

Bit 0: Receive BERT Enable (RBEN)

- 0 = Receive BERT is not assigned to this framer.
- 1 = Receive BERT is assigned to this framer.

Register Name: RBCS1, RBCS2, RBCS3

Register Description: Receive BERT Channel Select Registers

Address (hex): 00D4 to 00D6, 02D4 to 02D6, 04D4 to 04D6, 06D4 to 06D6

Setting any of the CH1 through CH24 bits in the RBCS1 through RBCS3 registers maps data from those channels to the on-board BERT. RBEN must be set to 1 for these registers to function. Multiple or all channels can be selected simultaneously. These registers affect the receive-side framer only.

	(LSB)							(MSB)
RBCS1	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8
RBCS2	CH9	CH10	CH11	CH12	CH13	CH14	CH15	CH16
RBCS3	CH17	CH18	CH19	CH20	CH21	CH22	CH23	CH24

Register Name: RBBS

Register Description: Receive BERT Bit Suppress Register

Address (hex): 008B, 028B, 048B, 068B

Bit#	7	6	5	4	3	2	1	0
Name	BSE8	BSE7	BSE6	BSE5	BSE4	BSE3	BSE2	BSE1
Default	0	0	0	0	0	0	0	0

Bit 7: Receive Channel Bit 8 Suppress (BSE8) MSB of the channel. Set to one to stop this bit from being used.

Bit 6: Receive Channel Bit 7 Suppress (BSE7) Set to one to stop this bit from being used.

Bit 5: Receive Channel Bit 6 Suppress (BSE6) Set to one to stop this bit from being used.

Bit 4: Receive Channel Bit 5 Suppress (BSE5) Set to one to stop this bit from being used

Bit 3 : Receive Channel Bit 4 Suppress (BSE4) Set to one to stop this bit from being used.

Bit 2: Receive Channel Bit 3 Suppress (BSE3) Set to one to stop this bit from being used.

Bit 1 : Receive Channel Bit 2 Suppress (BSE2) Set to one to stop this bit from being used.

Bit 0 : Receive Channel Bit 1 Suppress (BSE1) LSB of the channel. Set to one to stop this bit from being used.

11.5 T1 Transmit framer

Table 11-14 T1 Transmit Framer Register Map

ADDRESS (hex)			
PORT 1 + 0h			
PORT 2 + 200h	NAME	FUNCTION	
PORT 3 + 400h PORT 4 + 600h			
0100-010F		Unused. Must be set = 0 for proper operation	
0110	THC1	Tx HDLC Control 1	
0111	THBSE	Tx HDLC Bit Suppress	
0112	—	Unused. Must be set = 0 for proper operation	
0113	THC2	Tx HDLC Control 2	
0114 - 0117	-	Unused. Must be set = 0 for proper operation	
0118	SSIE1	Tx Software Signaling Insertion Enable 1	
0119	SSIE2	Tx Software Signaling Insertion Enable 2	
011A	SSIE3	Tx Software Signaling Insertion Enable 3	
011B – 011F	_	Unused. Must be set = 0 for proper operation	
0120	TIDR1	Tx Idle Definition 1	
0121	TIDR2	Tx Idle Definition 2	
0122	TIDR3	Tx Idle Definition 3	
0123	TIDR4	Tx Idle Definition 4	
0124	TIDR5	Tx Idle Definition 5	
0125	TIDR6	Tx Idle Definition 6	
0126	TIDR7	Tx Idle Definition 7	
0127	TIDR8	Tx Idle Definition 8	
0128	TIDR9	Tx Idle Definition 9	
0129	TIDR10	Tx Idle Definition 10	
012A	TIDR11	Tx Idle Definition 11	
012B	TIDR12	Tx Idle Definition 12	
012C	TIDR13	Tx Idle Definition 13	
012D	TIDR14	Tx Idle Definition 14	
012E	TIDR15	Tx Idle Definition 15	
012F	TIDR16	Tx Idle Definition 16	
0130	TIDR17	Tx Idle Definition 17	
0131	TIDR18	Tx Idle Definition 18	
0132	TIDR19	Tx Idle Definition 19	
0133	TIDR20	Tx Idle Definition 20	
0134	TIDR21	Tx Idle Definition 21	
0135	TIDR22	Tx Idle Definition 22	
0136	TIDR23	Tx Idle Definition 23	
0137	TIDR24	Tx Idle Definition 24	
0138-013F		Unused. Must be set = 0 for proper operation	
0140	TS1	Tx Signaling 1	
0141	TS2	Tx Signaling 2	
0142	TS3	Tx Signaling 3	
0143	TS4	Tx Signaling 4	
0144	TS5	Tx Signaling 5	
0145	TS6	Tx Signaling 6	
0146	TS7	Tx Signaling 7	
0147	TS8	Tx Signaling 8	
0148	TS9	Tx Signaling 9	
0149	TS10	Tx Signaling 10	
014A	TS11	Tx Signaling 11	

ADDRESS (hex) PORT 1 + 0h		
PORT 2 + 200h	NAME	FUNCTION
PORT 3 + 400h		
PORT 4 + 600h		
014B	TS12	Tx Signaling 12
014C - 014F	_	Unused. Must be set = 0 for proper operation.
0150	TCICE1	Tx Channel Idle Code Enable 1
0151	TCICE2	Tx Channel Idle Code Enable 2
0152	TCICE3	Tx Channel Idle Code Enable 3
0153-0161		Unused. Must be set = 0 for proper operation.
0162	TFDL	Tx FDL
0163	TBOC	Tx BOC
0164	TSLC1	Tx SLC96 Data Link 1
0165	TSLC2	Tx SLC96 Data Link 2
0166	TSLC3	Tx SLC96 Data Link 3
0167-017F	_	Unused. Must be set = 0 for proper operation.
0180	TMMR	Tx Master Mode
0181	TCR1	Tx Control 1
0182	TCR2	Tx Control 2
0183	TCR3	Tx Control 3
0184	TIOCR	Tx I/O Configuration
0185	TGCCR	Tx Gapped Clock Control
0186	TCR4	Tx Control 4
0187	THFC	Tx HDLC FIFO Control
0188	- TD000FI	Unused. Must be set = 0 for proper operation.
0189	TDS0SEL	Tx DS0 Monitor Select
018A	TBICR	Tx BERT Interface Control
018B 018C	TBBS	Tx BERT Bit Suppress Enable
018D	_	Unused. Must be set = 0 for proper operation.
018E	TSYNCC	Unused. Must be set = 0 for proper operation.
018F	ISTNCC	Tx Synchronizer Control
0190	TLS1	Unused. Must be set = 0 for proper operation Tx Latched Status 1
0190	TLS1	Tx Latched Status 1 Tx Latched Status 2 (HDLC)
0191	TLS2	Tx Latched Status 3 (SYNC)
0193-019E	ILOS	Unused. Must be set = 0 for proper operation
019F	TIIR	Tx Interrupt Information Register
01A0	TIM1	Tx Interrupt Mask Register 1
01A0 01A1	TIM2	Tx Interrupt Mask Register 1 Tx Interrupt Mask Register 2 (HDLC)
01A1 01A2	TIM3	Tx Interrupt Mask Register 2 (FIDEO)
01A3-01AB		Unused. Must be set = 0 for proper operation
01AC	TCD1	Tx Code Definition 1
01AD	TCD2	Tx Code Definition 2
01AE		Unused. Must be set = 0 for proper operation
01AF		Unused. Must be set = 0 for proper operation
01B0		Unused. Must be set = 0 for proper operation
01B1	TRTS2	Tx Real-Time Status Register 2 (HDLC)
01B2		Unused. Must be set = 0 for proper operation
01B3	TFBA	Tx HDLC FIFO Buffer Available
01B4	THF	Tx HDLC FIFO
01B5-01BA	_	Unused. Must be set = 0 for proper operation
01BB	TDS0M	Tx DS0 Monitor
01BC-01C3		Unused. Must be set = 0 for proper operation
01C4	TCMR1	Tx Channel Mark 1
01C5	TCMR2	Tx Channel Mark 2
		•

ADDRESS (hex) PORT 1 + 0h PORT 2 + 200h PORT 3 + 400h PORT 4 + 600h	NAME	FUNCTION
01C6	TCMR3	Tx Channel Mark 3
01C7	TCMR4	Tx Channel Mark 4
01C8	THSCS1	Tx Hardware Signaling Channel Select 1
01C9	THSCS2	Tx Hardware Signaling Channel Select 2
01CA	THSCS3	Tx Hardware Signaling Channel Select 3
01CB	THSCS4	Tx Hardware Signaling Channel Select 4
01CC	TGCCS1	Tx Gapped Clock Channel Select 1
01CD	TGCCS2	Tx Gapped Clock Channel Select 2
01CE	TGCCS3	Tx Gapped Clock Channel Select 3
01CF	TGCCS4	Tx Gapped Clock Channel Select 4
01D0	PCL1	Per-Channel Loopback Enable 1
01D1	PCL2	Per-Channel Loopback Enable 2
01D2	PCL3	Per-Channel Loopback Enable 3
01D3		Unused. Must be set = 0 for proper operation
01D4	TBPCS1	Tx BERT Channel Select 1
01D5	TBPCS2	Tx BERT Channel Select 2
01D6	TBPCS3	Tx BERT Channel Select 3
01D7 – 01FF		Unused. Must be set = 0 for proper operation

11.5.1 Transmit-Master Mode Register

The transmit-master mode register (TMMR) controls the initialization of the transmit-side formatter. The FRM_EN bit may be left 'low' if the formatter for that particular port is not going to be used, putting the circuit in a low-power (sleep) state.

Register Name: TMMR

Register Description: Transmit Master Mode Register

Address (hex): 0180

Bit# 0 6 Name FRM EN INIT DONE **SFTRST** T1/E1 0 Default 0 0 O 0 0 0 0

Bit 7: Framer Enable (FRM_EN) This bit must be written with the desired value prior to setting INIT_DONE.

0 = Framer disabled (held in low-power state)

1 = Framer enabled (all features active)

Bit 6 : Initialization Done (INIT_DONE) The host (user) must set this bit once he/she has written the configuration registers. The host is required to write or clear all RAM based registers (addresses 100H to 17FH) prior to setting this bit. Once INIT_DONE is set, the internal processor will check the FRM_EN bit. If enabled, the internal processor continues executing based on the initial configuration.

Bits 5 to 2 : Unused. Must be set = 0 for proper operation.

Bit 1 : Soft Reset (SFTRST) Level-sensitive processor reset. Should be taken high then low to reset and initialize the internal processor.

0 = Normal operation

1 = Hold the internal RISC in reset. This bit only affects the transmit-side processor.

Bit 0 : Transmitter T1/E1 Mode Select (T1/E1) Sets operating mode for transmitter only! This bit must be written with the desired value prior to setting INIT_DONE.

0 = T1 operation

1 = E1 operation

11.5.2 Interrupt Information Registers

The interrupt information registers provide an indication of which DS26556 status registers are generating an interrupt. When an interrupt occurs, the host can read TIIR to quickly identify which of the transmit status registers are causing the interrupt(s). These are real-time registers in that the bits will clear once the appropriate interrupt has been serviced and cleared.

Register Name: TIIR

Register Description: Transmit Interrupt Information Register

Address (hex): 019F

Bit# 6 5 0 TLS3 TLS2 TLS1 Name 0 0 0 0 0 Default 0 0 0

11.5.3 T1 Transmit Control Registers

Register Name: TCR1

Register Description: Transmit Control Register 1

Address (hex): 0181

Bit#	7	6	5	4	3	2	1	0
Name	TJC	TFPT	TCPT	TSSE	GB7S	TB8ZS	TAIS	TRAI
Default	0	0	0	0	0	0	0	0

Bit 7: Transmit Japanese CRC6 Enable (TJC)

0 = use ANSI/AT&T/ITU CRC6 calculation (normal operation)

1 = use Japanese standard JT-G704 CRC6 calculation

Bit 6: Transmit F-Bit Pass-Through (TFPT)

0 = F bits sourced internally

1 = F bits sampled at TSER

Bit 5: Transmit CRC Pass-Through (TCPT)

0 = source CRC6 bits internally

1 = CRC6 bits sampled at TSER during F-bit time

Bit 4: Transmit-Software Signaling Enable (TSSE)

0 = do not source signaling data from the TSx registers regardless of the SSIEx registers. The SSIEx registers still define which channels are to have B7 stuffing performed.

1 = source signaling data as enabled by the SSIEx registers.

Bit 3: Global Bit 7 Stuffing (GB7S)

0 = allow the SSIEx registers to determine which channels containing all zeros are to be bit 7 stuffed

1 = force bit 7 stuffing in all-zero byte channels regardless of how the SSIEx registers are programmed

Bit 2: Transmit B8ZS Enable (TB8ZS)

0 = B8ZS disabled

1 = B8ZS enabled

Bit 1: Transmit Alarm Indication Signal (TAIS)

0 = transmit data normally

1 = transmit an unframed all-ones code

Bit 0 : Transmit Remote Alarm Indication (TRAI)

0 = do not transmit remote alarm

1 = transmit remote alarm

Register Name: TCR2

Register Description: Transmit Control Register 2

Address (hex): 0182

Bit# 6 3 2 0 5 **TFDLS** TSLC96 FBCT2 FBCT1 TD4RM PDE TB7ZS Name Default 0 0 0 0 0 0

Bit 7: TFDL Register Select (TFDLS)

0 = source FDL or Fs bits from the internal TFDL register or the SLC-96 data formatter (TCR2.6)

1 = source FDL or Fs bits from the internal HDLC controller

Bit 6 : Transmit SLC–96 (TSLC96) Set this bit to a one in SLC-96 framing applications. Must be set to source the SLC-96 alignment pattern and data from the TSLC1-3 registers. See Section 11.4.9 for details.

0 = SLC-96 insertion disabled

1 = SLC-96 insertion enabled

Bit 5: Unused. Must be set = 0 for proper operation.

Bit 4 : F Bit Corruption Type 2 (FBCT2) Setting this bit high enables the corruption of one Ft (D4 framing mode) or FPS (ESF framing mode) bit in every 128 Ft or FPS bits as long as the bit remains set.

Bit 3 : F Bit Corruption Type 1 (FBCT1) A low-to-high transition of this bit causes the next three consecutive Ft (D4 framing mode) or FPS (ESF framing mode) bits to be corrupted causing the remote end to experience a loss of synchronization.

Bit 2: Transmit D4 RAI Select (TD4RM)

0 = zeros in bit 2 of all channels

1 = a one in the S-bit position of frame 12

Bit 1 : Pulse Density Enforcer Enable (PDE) The framer always examines both the transmit and receive data streams for violations of the following rules which are required by ANSI T1.403: no more than 15 consecutive zeros and at least N ones in each and every time window of $8 \times (N + 1)$ bits where N = 1 through 23. Violations for the transmit and receive data streams are reported in the TLS1.3 and RLS2.7 bits respectively. When this bit is set to one, the DS26556 will force the transmitted stream to meet this requirement no matter the content of the transmitted stream. When running B8ZS, this bit should be set to zero since B8ZS encoded data streams cannot violate the pulse density requirements.

0 = disable transmit pulse density enforcer

1 = enable transmit pulse density enforcer

Bit 0 : Transmit Side Bit 7 Zero Suppression Enable (TB7ZS)

0 = no stuffing occurs

1 = force bit 7 to a one as determined by the GB7S bit at TCR1.3

Register Name: TCR3

Register Description: Transmit Control Register 3

Address (hex): 0183

Bit #	7	6	5	4	3	2	1	0
Name	-	-	TCSS1	TCSS0	-	TFM	IBVD	TLOOP
Default	0	0	0	0	0	0	0	0

Bits 7 & 6: Unused. Must be set = 0 for proper operation.

Bit 5 : Transmit Clock Source Select Bit 1 (TCSS1)

TCSS1	TCSS0	Transmit Clock Source
0	0	The TCLK pin is always the source of Transmit Clock.
0	1	Switch to the clock present at RCLK when the signal at the TCLK pin fails to transition after 1 channel time.
1	0	For Future Use
1	1	Use the signal present at RCLK as the Transmit Clock. The TCLK pin is ignored.

Bit 4: Transmit Clock Source Select Bit 0 (TCSS0)

Bit 3 : Unused. Must be set = 0 for proper operation.

Bit 2: Transmit Frame Mode Select (TFM)

0 = ESF framing mode

1 = D4 framing mode

Bit 1 : Insert BPV (IBPV) A 0-to-1 transition on this bit will cause a single BiPolar Violation (BPV) to be inserted into the transmit data stream. Once this bit has been toggled from a 0 to a 1, the device waits for the next occurrence of three consecutive ones to insert the BPV. This bit must be cleared and set again for a subsequent error to be inserted.

Bit 0: Transmit Loop-Code Enable (TLOOP) See Section 11.4.10 for details.

0 = transmit data normally

1 = replace normal transmitted data with repeating code as defined in registers TCD1 and TCD2

Register Name: TCR4

Register Description: Transmit Control Register 4

Address (hex): 0186

Bit#	7	6	5	4	3	2	1	0
Name	_	_	_	_	TRAIM	TAISM	TC1	TC0
Default	0	0	0	0	0	0	0	0

Bits 7 to 4: Unused. Must be set = 0 for proper operation.

Bit 3 : Transmit RAI Mode (TRAIM) Determines the pattern sent when TRAI (TCR1.0) is activated in ESF frame mode only.

0 = transmit normal RAI upon activation with TCR1.0

1 = transmit RAI-CI (T1.403) upon activation with TCR1.0

Bit 2: Transmit AIS Mode (TAISM) Determines the pattern sent when TAIS (TCR1.1) is activated.

0 = transmit normal AIS (unframed all ones) upon activation with TCR1.1

1 = transmit AIS-CI (T1.403) upon activation with TCR1.1

Bits 1 to 0 : Transmit Code Length Definition Bits (TC0 to TC1)

TC1	TC0	Length Selected (bits)
0	0	5
0	1	6/3
1	0	7
1	1	16/8/4/2/1

Register Name: TIOCR

Register Description: Transmit I/O Configuration Register

Address (hex): 0184

Bit#	7	6	5	4	3	2	1	0
Name	TCLKINV	TSYNCINV	HSSYNCINV	HSCLKM	HSSM	TSIO	TSDW	TSM
Default	0	0	0	0	0	0	0	0

Bit 7: TCLK Invert (TCLKINV)

0 = No inversion

1 = Invert

Bit 6: TSYNC Invert (TSYNCINV)

0 = No inversion

1 = Invert

Bit 5: HSSYNC Invert (HSSYNCINV)

0 = No inversion

1 = Invert

Bit 4: HSYSCLK Mode Select (HSCLKM)

0 = if HSYSCLK is 1.544MHz

1 = if HSYSCLK is 2.048/4.096/8.192/16.384MHz Note: This bit setting must match RIOCR.HSCLKM.

Bit 3: HSSYNC Mode Select (HSSM) Selects frame or multiframe mode for the HSSYNC pin.

0 = frame mode

1 = multiframe mode

Bit 2: TSYNC I/O Select (TSIO)

0 = TSYNC is an input

1 = TSYNC is an output

Bit 1 : TSYNC Doublewide (TSDW) (Note: This bit must be set to zero when TSYNC is an input (TSIO=0) or when TSYNC is in multiframe output mode (TSM = 1).

0 = do not pulse double wide in signaling frames

1 = do pulse double wide in signaling frames

Bit 0 : TSYNC Mode Select (TSM) Selects frame or multiframe mode for the TSYNC pin. Valid when TSYNC is an output.

0 = frame mode

1 = multiframe mode

11.5.4 T1 Transmit Status and Information

When a particular event has occurred (or is occurring), the appropriate bit in one of these registers will be set to a one. Status bits may operate in either a latched or real-time fashion. Some latched bits may be enabled to generate a hardware interrupt via the $\overline{\text{INT}}$ signal.

Real-Time Bits

Some status bits operate in a real-time fashion. These bits are read-only and indicate the present state of an alarm or a condition. Real time bits will remain stable, and valid during the host read operation. The current value of the internal status signals can be read at any time from the real time status registers without changing any the latched status register bits

Latched Bits

When an event or an alarm occurs and a latched bit is set to a one, it will remain set until cleared by the user. These bits typically respond on a 'change-of-state' for an alarm, condition, or event; and operate in a read-then-write fashion. The user should read the value of the desired status bit, and then write a '1' to that particular bit location in order to clear the latched value (write a '0' to locations not to be cleared). Once the bit is cleared, it will not be set again until the event has occurred again.

Mask Bits

Some of the alarms and events can be either masked or unmasked from the interrupt pin via the Interrupt Mask Registers (TIMx). When unmasked, the $\overline{\text{INT}}$ signal will be forced low when the enabled event or condition occurs. The $\overline{\text{INT}}$ pin will be allowed to return high (if no other unmasked interrupts are present) when the user reads then clears (with a write) the alarm bit that caused the interrupt to occur. Note that the latched status bit and the $\overline{\text{INT}}$ pin will clear even if the alarm is still present.

Register Name: TLS1

Register Description: Transmit Latched Status Register 1

Address (hex): 0190, 0390, 0590, 0790

Bit#	7	6	5	4	3	2	1	0
Name	-	-	-	TSLC96	TPDV	TMF	LOTCC	LOTC
Default	0	0	0	0	0	0	0	0

All bits in this register are latched and can cause interrupts.

Bits 7 to 5: Unused.

Bit 4 : Transmit SLC96 Multiframe Event (TSLC96) When enabled by TCR2.6, this bit will set once per SLC96 multiframe (72 frames) to alert the host that new data may be written to the TSLC1-TSLC3 registers. See section 11.5.13.

Bit 3 : Transmit Pulse Density Violation Event (TPDV) Set when the transmit data stream does not meet the ANSI T1.403 requirements for pulse density.

Bit 2: Transmit Multiframe Event (TMF) Set every 1.5ms on D4 MF boundaries or every 3ms on ESF MF boundaries.

Bit 1: Loss of Transmit Clock Condition Clear (LOTCC) Set when the LOTC condition has cleared (a clock has been sensed at the TCLK pin).

Bit 0 : Loss of Transmit Clock Condition (LOTC) Set when the TCLK pin has not transitioned for approximately 3 clock periods. Will force the LOTC pin high if enabled. This bit can be cleared by the host even if the condition is still present. The LOTC pin will remain high while the condition exists, even if the host has cleared the status bit.

If enabled by TIM1.0, the $\overline{\text{INT}}$ pin will transition low when this bit is set, and transition high when this bit is cleared (if no other unmasked interrupt conditions exist).

Register Name: TIM1

Register Description: Transmit Interrupt Mask Register 1

Address (hex): 01A0, 03A0, 05A0, 07A0

Bit#	7	6	5	4	3	2	1	0
Name	-	-	-	TSLC96	TPDV	TMF	LOTCC	LOTC
Default	0	0	0	0	0	0	0	0

Bits 7 to 5 : Unused. Must be set = 0 for proper operation.

Bit 4 : Transmit SLC96 Multiframe Event (TSLC96)

0 = interrupt masked

1 = interrupt enabled

Bit 3 : Transmit Pulse Density Violation Event (TPDV)

0 = interrupt masked

1 = interrupt enabled

Bit 2 : Transmit Multiframe Event (TMF)

0 = interrupt masked

1 = interrupt enabled

Bit 1 : Loss of Transmit Clock Clear Condition (LOTCC)

0 = interrupt masked

1 = interrupt enabled

Bit 0 : Loss of Transmit Clock Condition (LOTC)

0 = interrupt masked

1 = interrupt enabled

11.5.5 T1 Per-Channel Loopback

Each of the bit position in the Per-Channel Loopback Registers (PCLR1/PCLR2/PCLR3) represent a DS0 channel in the outgoing frame. When these bits are set to a one, data from the corresponding receive channel will replace the data on TSER for that channel.

Register Name: PCL1

Register Description: Per-Channel Loopback Enable Register 1

Address (hex): 01D0, 03D0, 05D0, 07D0

Bit#	7	6	5	4	3	2	1	0
Name	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Per-Channel Loopback Enable for Channels 1 to 24 (CH8 to CH1)

0 = Loopback disabled

1 = Enable Loopback. Source data from the corresponding receive channel

Register Name: PCL2

Register Description: Per-Channel Loopback Enable Register 2

Address (hex): 01D1, 03D1, 05D1, 07D1

Bit#	7	6	5	4	3	2	1	0
Name	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Per-Channel Loopback Enable for Channels 1 to 24 (C16 to CH9)

0 = Loopback disabled

1 = Enable Loopback. Source data from the corresponding receive channel

Register Name: PCL3

Register Description: Per-Channel Loopback Enable Register 3

Address (hex): 01D2, 03D2, 05D2, 07D2

Bit#	7	6	5	4	3	2	1	0
Name	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Per-Channel Loopback Enable for Channels 1 to 24 (CH24 to CH17)

0 = Loopback disabled

1 = Enable Loopback. Source data from the corresponding receive channel

11.5.6 T1 Transmit DS0 Monitoring Function

Register Name: TDS0SEL

Register Description: Transmit DS0 Channel Monitor Select

Address (hex): 0189, 0389, 0589, 0789

Bit#	7	6	5	4	3	2	1	0
Name	_	_	_	TCM4	TCM3	TCM2	TCM1	TCM0
Default	0	0	0	0	0	0	0	0

Bits 7 to 5 : Unused. Must be set = 0 for proper operation.

Bits 4 to 0: Transmit Channel Monitor Bits (TCM0 to TCM4) TCM0 is the LSB of a 5 bit channel select that determines which transmit channel data will appear in the TDS0M register.

Register Name: TDS0M

Register Description: Transmit DS0 Monitor Register

Address (hex): 01BB, 03BB, 05BB, 07BB

Bit#	7	6	5	4	3	2	1	0
Name	B1	B2	B3	B4	B5	B6	B7	B8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Transmit DS0 Channel Bits (B1 to B8) Transmit channel data that has been selected by the Transmit Channel Monitor Select Register. B8 is the LSB of the DS0 channel (last bit to be transmitted).

11.5.7 T1 Transmit Signaling Operation

Register Name: TS1 TO TS12

Register Description: Transmit Signaling Registers (T1 MODE)

Address (hex): 0140 - 014B, 0340 - 034B, 0540 - 054B, 0740 - 074B

(MSB)							(LSB)	
CH1-A	CH1-B	CH1-C	CH1-D	CH13-A	CH13-B	CH13-C	CH13-D	TS1
CH2-A	CH2-B	CH2-C	CH2-D	CH14-A	CH14-B	CH14-C	CH14-D	TS2
CH3-A	CH3-B	CH3-C	CH3-D	CH15-A	CH15-B	CH15-C	CH15-D	TS3
CH4-A	CH4-B	CH4-C	CH4-D	CH16-A	CH16-B	CH16-C	CH16-D	TS4
CH5-A	CH5-B	CH5-C	CH5-D	CH17-A	CH17-B	CH17-C	CH17-D	TS5
CH6-A	CH6-B	CH6-C	CH6-D	CH18-A	CH18-B	CH18-C	CH18-D	TS6
CH7-A	CH7-B	CH7-C	CH7-D	CH19-A	CH19-B	CH19-C	CH19-D	TS7
CH8-A	CH8-B	CH8-C	CH8-D	CH20-A	CH20-B	CH20-C	CH20-D	TS8
CH9-A	CH9-B	CH9-C	CH9-D	CH21-A	CH21-B	CH21-C	CH21-D	TS9
CH10-A	CH10-B	CH10-C	CH10-D	CH22-A	CH22-B	CH22-C	CH22-D	TS10
CH11-A	CH11-B	CH11-C	CH11-D	CH23-A	CH23-B	CH23-C	CH23-D	TS11
CH12-A	CH12-B	CH12-C	CH12-D	CH24-A	CH24-B	CH24-C	CH24-D	TS12

Note: In D4 framing mode, the C and D bits are not used.

Register Name: SSIE1

Register Description: Software Signaling Insertion Enable Register 1

Address (hex): 0118, 0318, 0518, 0718

Bit#	7	6	5	4	3	2	1	0
Name	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Software Signaling Insertion Enable for Channels 8 to 8 (CH8 to CH1) These bits determine which channels are to have signaling inserted form the Transmit Signaling registers.

0 = do not source signaling data from the TS registers for this channel

1 = source signaling data from the TS registers for this channel

Register Name: SSIE2

Register Description: Software Signaling Insertion Enable Register 2

Address (hex): 0119, 0319, 0519, 0719

Bit#	7	6	5	4	3	2	1	0
Name	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Software Signaling Insertion Enable for Channels 16 to 9 (CH16 TO CH9) These bits determine which channels are to have signaling inserted form the Transmit Signaling registers.

0 = do not source signaling data from the TS registers for this channel

1 = source signaling data from the TS registers for this channel

Register Name: SSIE3

Register Description: Software Signaling Insertion Enable Register 3

Address (hex): 011A, 031A, 051A, 071A

Bit#	7	6	5	4	3	2	1	0
Name	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Software Signaling Insertion Enable for Channels 24 to 17 (CH24 TO CH17) These bits determine which channels are to have signaling inserted form the Transmit Signaling registers.

0 = do not source signaling data from the TS registers for this channel

1 = source signaling data from the TS registers for this channel

Register Name: THSCS1

Register Description: Transmit Hardware Signaling Channel Select Register 1

Address (hex): 01C8, 03C8, 05C8, 07C8

Bit#	7	6	5	4	3	2	1	0
Name	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 / Transmit Hardware Signaling Channel Select for Channels 8 to 1 (CH8 to CH1). This function is used only on ports configured for high-speed multiplexed TDM bus operation. These bits determine which channels will have signaling data inserted from the HTSIG pin into the demultiplexed data stream from the HTDATA pin.

0 = do not source signaling data from the HTSIG pin for this channel

1 = source signaling data from the HTSIG pin for this channel

Register Name: THSCS2

Register Description: Transmit Hardware Signaling Channel Select Register 2

Address (hex): 01C9, 03C9, 05C9, 07C9

Bit#	7	6	5	4	3	2	1	0
Name	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 / Transmit Hardware Signaling Channel Select for Channels 16 to 9 (CH16 to CH9). This function is used only on ports configured for high-speed multiplexed TDM bus operation. These bits determine which channels will have signaling data inserted from the HTSIG pin into the demultiplexed data stream from the HTDATA pin.

0 = do not source signaling data from the HTSIG pin for this channel

1 = source signaling data from the HTSIG pin for this channel

Register Name: THSCS3

Register Description: Transmit Hardware Signaling Channel Select Register 3

Address (hex): 01CA, 03CA, 05CA, 07CA

Bit#	7	6	5	4	3	2	1	0
Name	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 / Transmit Hardware Signaling Channel Select for Channels 24 to 17 (CH24 to CH17 This function is used only on ports configured for high-speed multiplexed TDM bus operation. These bits determine which channels will have signaling data inserted from the HTSIG pin into the demultiplexed data stream from the HTDATA pin.

0 = do not source signaling data from the HTSIG pin for this channel

1 = source signaling data from the HTSIG pin for this channel

Register Name: THSCS4

Register Description: Transmit Hardware Signaling Channel Select Register 4

Address (hex): 01CB, 03CB, 05CB, 07CB

Bit#	7	6	5	4	3	2	1	0
Name	CH32	CH31	CH30	CH29	CH28	CH27	CH26	CH25
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 / Transmit Hardware Signaling Channel Select for Channels 32 to 25 (CH32 to CH25). This function is used only on ports configured for high-speed multiplexed TDM bus operation. These bits determine which channels will have signaling data inserted from the HTSIG pin into the demultiplexed data stream from the HTDATA pin.

0 = do not source signaling data from the HTSIG pin for this channel

1 = source signaling data from the HTSIG pin for this channel

11.5.8 T1 Transmit Per-Channel Idle Code Insertion

Channel data can be replaced by an idle code on a per-channel basis in the transmit and receive directions. Twenty-four Transmit Idle Definition Registers (TIDR1-TIDR24) are provided to set the 8-bit idle code for each channel. The Transmit Channel Idle Code Enable registers (TCICE1-3) are used to enable idle code replacement on a per channel basis.

Register Name: TIDR1 to TIDR24

Register Description: Transmit Idle Code Definition Registers 1 to 24

Address (hex): 0120 to 0137, 0320 to 0337, 0520 to 0537, 0720 to 0737

Bit #	7	6	5	4	3	2	1	0
Name	C7	C6	C5	C4	C3	C2	C1	C0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Per-Channel Idle Code Bits (C0 to C7) C0 is the LSB of the Code (this bit is transmitted last). Address 120H is for channel 1, address 137H is for channel 24. The Transmit Channel Idle Code Enable Registers (TCICE1/2/3) are used to determine which of the 24 T1 channels from the backplane should be overwritten with the code placed in the Transmit Idle Code Definition Register.

Register Name: TCICE1

Register Description: Transmit Channel Idle Code Enable Register 1

Address (hex): 0150, 0350, 0550, 0750

Bit#	7	6	5	4	3	2	1	0
Name	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Transmit Channels 8 to 1 Code Insertion Control Bits (CH8 to CH1)

0 = do not insert data from the Idle Code Array into the transmit data stream

1 = insert data from the Idle Code Array into the transmit data stream

Register Name: TCICE2

Register Description: Transmit Channel Idle Code Enable Register 2

Address (hex): 0151, 0351, 0551, 0751

Bit#	7	6	5	4	3	2	1	0
Name	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Transmit Channels 16 to 9 Code Insertion Control Bits (CH16 to CH9)

0 = do not insert data from the Idle Code Array into the transmit data stream

1 = insert data from the Idle Code Array into the transmit data stream

Register Name: TCICE3

Register Description: Transmit Channel Idle Code Enable Register 3

Address (hex): 0152, 0352, 0552, 0752

Bit #	7	6	5	4	3	2	1	0
Name	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Transmit Channels 24 to 17 Code Insertion Control Bits (CH24 to CH17)

0 = do not insert data from the Idle Code Array into the transmit data stream

1 = insert data from the Idle Code Array into the transmit data stream

11.5.9 T1 Transmit Channel Mark Registers

Register Name: TCMR1

Register Description: Transmit Channel Mark Register 1

Address (hex): 01C4, 03C4, 05C4, 07C4

Bit#	7	6	5	4	3	2	1	0
Name	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Transmit Channels 8 to 8 Channel Mark Control Bits (CH8 to CH1)

0 = force the TCHMRK pin to remain low during this channel time

1 = force the TCHMRK pin high during this channel time

Register Name: TCMR2

Register Description: Transmit Channel Mark Register 2

Address (hex): 01C5, 03C5, 05C5, 07C5

Bit#	7	6	5	4	3	2	1	0
Name	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Transmit Channels 16 to 9 Channel Mark Control Bits (CH16 to CH9)

0 = force the TCHMRK pin to remain low during this channel time

1 = force the TCHMRK pin high during this channel time

Register Name: TCMR3

Register Description: Transmit Channel Mark Register 3

Address (hex): 01C6, 03C6, 05C6, 07C6

Bit #	7	6	5	4	3	2	1	0
Name	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Transmit Channels 24 to 17 Channel Mark Control Bits (CH24 to CH17)

0 = force the TCHMRK pin to remain low during this channel time

1 = force the TCHMRK pin high during this channel time

In T1 mode, the LSB of TCMR4 determines whether or not the TCHMRK signal will pulse high during the F-Bit time:

Register Name: TCMR4

Register Description: Transmit Channel Mark Register 4

Address (hex): 01C7, 03C7, 05C7, 07C7

Bit#	7	6	5	4	3	2	1	0
Name	-	-	-	-	-	-	-	T1FBM
Default	0	0	0	0	0	0	0	0

Bits 7 to 1: Unused. Must be set = 0 for proper operation.

Bit 0 : T1 F-Bit Mark (T1FBM) In T1 mode, the LSB of TCMR4 determines whether or not the TCHMRK signal will pulse high during the F-Bit time:

0 = do not pulse TCHMRK during the F-Bit

1 = pulse TCHMRK during the F-Bit

Register Name: TGCCR

Register Description: Transmit Gapped Clock Control Register

Address (hex): $185h + (200h \times n)$: where n = 0 to 3, for Ports 1 to 4

Bit#	7	6	5	4	3	2	1	0
Name	TDATFMT	TGCLKEN	-	-	-	-	-	-
Default	0	0	0	0	0	0	0	0

Bit 7 : Transmit Channel Data Format (TDATFMT)

0 = 64KBps (data contained in all 8 bits)

1 = 56KBps (data contained in 7 out of the 8 bits)

Bit 6 : Transmit Gapped Clock Enable (TGPCKEN) If the TCHMRK pin is in the channel clock mode then this bit determines if TCHMRK outputs a pulse during the LSB of all channels or a gapped clock during selected channels.

0 = pulse during LSB of all

1 = gapped clock during selected channels

Bits 5 to 0: Unused. Must be set = 0 for proper operation.

11.5.10 Fractional T1 Support (Gapped Clock Mode)

The DS26556 can be programmed to output gapped clocks for selected channels in transmit path. When the TCHMRK pin is in the channel clock mode and gapped channel clock is enabled, a gated clock is output on the TCHMRK pin during selected channel times. The channel selection is controlled via the transmit-gapped-clock channel-select registers (TGCCS1-TGCCS4). If TCHMRK is in the channel clock mode clock mode is enabled by the TGCLKEN bit (TESCR.6). Both 56kbps and 64kbps channel formats are supported as determined by TESCR.7. When 56kbps mode is selected, the clock corresponding to the Data/Control bit in the channel is omitted (only the seven most significant bits of the channel have clocks).

Register Name: TGCCS1, TGCCS2, TGCCS3, TGCCS4

Register Description: Transmit Gapped Clock Channel Select Registers

Address (hex): 1CCh, 1CDh, 1CEh, 1CFh [+ (200h x n) ; where n = 0 to 3, for Ports 1 to 4]

(MSB)							(LSB)	
CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	TGCCS1
CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	TGCCS2
CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	TGCCS3
CH32	CH31	CH30	CH29	CH28	CH27	CH26	CH25/Fbit	TGCCS4*

Bits 7 to 0: Transmit Channels 1 to 32 Gapped Clock Channel Select Bits (CH1 to CH32)

0 = no clock is present on TCHMRK during this channel time

1 = output a clock on TCHMRK during this channel time. The clock will be synchronous with TCLK.

* Note that TGCCS4 has two functions:

When 2.048MHz backplane mode is selected, this register allows the user to enable the 'gapped' clock on TCHMRK for any of the 32 possible backplane channels.

When 1.544MHz backplane mode is selected, the LSB of this register determines whether or not a clock is generated on TCHMRK during the F-Bit time:

TGCCS4.0 = 0, do not generate a clock during the F-Bit

TGCCS4.0 = 1, generate a clock during the F-Bit

In this mode, TGCCS4.1 to TGCCS4.7 should be set to 0.

11.5.11 T1 Transmit Bit Oriented Code (BOC) Controller

The DS26556 contains a BOC generator on the transmit side and a BOC detector on the receive side. The BOC function is available only in T1 mode.

Bits 0 through 5 in the TBOC register contain the BOC message to be transmitted. Setting SBOC = 1 (THC2.6) causes the transmit BOC controller to immediately begin inserting the BOC sequence into the FDL bit position. The transmit BOC controller automatically provides the abort sequence. BOC messages will be transmitted as long as SBOC is set. Note that the TFPT (TCR1.6) control bit must be set to 'zero' for the BOC message to overwrite F-bit information being sampled on TSER.

To Transmit a BOC

- 1) Write 6-bit code into the TBOC register.
- 2) Set SBOC bit in THC2 = 1.

Register Name: TBOC

Register Description: Transmit BOC Register

Address (hex): $163h + (200h \times n)$: where n = 0 to 3, for Ports 1 to 4

Bit#	7	6	5	4	3	2	1	0
Name		_	TBOC5	TBOC4	TBOC3	TBOC2	TBOC1	TBOC0
Default	0	0	0	0	0	0	0	0

Bits 7 & 6: Unused, must be set = 0 for proper operation.

Bit 5: Transmit BOC Bit 5 (TBOC5) MSB of the Transmit BOC Code.

Bit 4: Transmit BOC Bit 4 (TBOC4)

Bit 3: Transmit BOC Bit 3 (TBOC3)

Bit 2: Transmit BOC Bit 2 (TBOC2)

Bit 1 : Transmit BOC Bit 1 (TBOC1)

Bit 0: Transmit BOC Bit 0 (TBOC0). LSB of the Transmit BOC Code.

11.5.12 T1 Transmit FDL

Register Name: TFDL

Register Description: Transmit FDL Register

Address (hex): $162h + (200h \times n)$: where n = 0 to 3, for Ports 1 to 4

Bit#	7	6	5	4	3	2	1	0
Name	TFDL7	TFDL6	TFDL5	TFDL4	TFDL3	TFDL2	TFDL1	TFDL0
Default	0	0	0	1	1	1	0	0

Note: Also used to insert Fs framing pattern in D4 framing mode.

The Transmit FDL Register (TFDL) contains the Facility Data Link (FDL) information that is to be inserted on a byte basis into the outgoing T1 data stream. The LSB is transmitted first. In D4 mode, only the lower six bits are used.

Bit 7: Transmit FDL Bit 7 (TFDL7) MSB of the Transmit FDL Code.

Bit 6: Transmit FDL Bit 6 (TFDL6)

Bit 5 : Transmit FDL Bit 5 (TFDL5)

Bit 4: Transmit FDL Bit 4 (TFDL4)

Bit 3: Transmit FDL Bit 3 (TFDL3)

Bit 2: Transmit FDL Bit 2 (TFDL2)

Bit 1: Transmit FDL Bit 1 (TFDL1)

Bit 0 : Transmit FDL Bit 0 (TFDL0) LSB of the Transmit FDL Code.

11.5.13 Transmit SLC-96 Operation

Register Name: TSLC1, TSLC2, TSLC3

Register Description: Transmit SLC96 Data Link Registers

Address (hex): 164h, 165h, 166h [+ (200h x n) : where n = 0 to 3, for Ports 1 to 4]

(MSB)							(LSB)	
C8	C7	C6	C5	C4	C3	C2	C1	TSLC1
M2	M1	S = 0	S = 1	S = 0	C11	C10	C9	TSLC2
S = 1	S4	S3	S2	S1	A2	A1	М3	TSLC3

11.5.14 Transmit HDLC Controller

Register Name: THC1

Register Description: Transmit HDLC Control Register 1

Address (hex): $110h + (200h \times n)$: where n = 0 to 3, for Ports 1 to 4

Bit# 3 2 6 5 0 TEOML THR THMS TFS TEOM TZSD TCRCD Name NOFS Default 0 0 0 0 0 0 0 0

Bit 7: Number of Flags Select (NOFS)

0 = send one flag between consecutive messages

1 = send two flags between consecutive messages

Bit 6 : Transmit End of Message and Loop (TEOML) To loop on a message, should be set to a one just before the last data byte of an HDLC packet is written into the transmit FIFO. The message will repeat until the user clears this bit or a new message is written to the transmit FIFO. If the host clears the bit, the looping message will complete then flags will be transmitted until new message is written to the FIFO. If the host terminates the loop by writing a new message to the FIFO the loop will terminate, one or two flags will be transmitted and the new message will start. If not disabled via TCRCD, the transmitter will automatically append a 2-byte CRC code to the end of all messages.

Bit 5 : Transmit HDLC Reset (THR) Will reset the transmit HDLC controller and flush the transmit FIFO. An abort followed by 7Eh or FFh flags/idle will be transmitted until a new packet is initiated by writing new data into the FIFO. Must be cleared and set again for a subsequent reset.

0 = Normal operation

1 = Reset transmit HDLC controller and flush the transmit FIFO

Bit 4: Transmit HDLC Mapping Select (THMS)

0 = Transmit HDLC assigned to channels

1 = Transmit HDLC assigned to FDL(T1 mode), Sa Bits(E1 mode)

Bit 3: Transmit Flag/Idle Select (TFS) This bit selects the inter-message fill character after the closing and before the opening flags (7Eh).

0 = 7Eh

1 = FFh

Bit 2 : Transmit End of Message (TEOM) Should be set to a one just before the last data byte of an HDLC packet is written into the transmit FIFO at THF. If not disabled via TCRCD, the transmitter will automatically append a 2-byte CRC code to the end of the message.

Bit 1 : Transmit Zero Stuffer Defeat (TZSD) The Zero Stuffer function automatically inserts a zero in the message field (between the flags) after 5 consecutive ones to prevent the emulation of a flag or abort sequence by the data pattern. The receiver automatically removes (de-stuffs) any zero after 5 ones in the message field.

0 = enable the zero stuffer (normal operation)

1 = disable the zero stuffer

Bit 0 : Transmit CRC Defeat (TCRCD) A 2-byte CRC code is automatically appended to the outbound message. This bit can be used to disable the CRC function.

0 = enable CRC generation (normal operation)

1 = disable CRC generation

Register Name: THC2

Register Description: Transmit HDLC Control Register 2

Address (hex): $113h + (200h \times n) : where n = 0 to 3, for Ports 1 to 4$

Bit#	7	6	5	4	3	2	1	0
Name	TABT	SBOC	THCEN	THCS4	THCS3	THCS2	THCS1	THCS0
Default	0	0	0	0	0	0	0	0

Bit 7 : Transmit Abort (TABT) A 0-to-1 transition will cause the FIFO contents to be dumped and one FEh abort to be sent followed by 7Eh or FFh flags/idle until a new packet is initiated by writing new data into the FIFO. Must be cleared and set again for a subsequent abort to be sent.

Bit 6 : Send BOC (SBOC) Set = 1 to transmit the BOC code placed in bits 0 to 5 of the TBOC register.

Bit 5: Transmit HDLC Controller Enable (THCEN)

0 = Transmit HDLC Controller is not enabled

1 = Transmit HDLC Controller is enabled

Bits 4 to 0 : Transmit HDLC Channel Select (THCS0 to 4). Determines which DSO channel will carry the HDLC message if enabled.

Register Name: THBSE

Register Description: Transmit HDLC Bit Suppress

Address (hex): $111h + (200h \times n)$: where n = 0 to 3, for Ports 1 to 4

Bit#	7	6	5	4	3	2	1	0
Name	TBSE8	TBSE7	TBSE6	TBSE5	TBSE4	TBSE3	TBSE2	TBSE1
Default	0	0	0	0	0	0	0	0

Bit 7: Transmit Bit 8 Suppress (TBSE8) MSB of the channel. Set to one to stop this bit from being used.

Bit 6: Transmit Bit 7 Suppress (TBSE7) Set to one to stop this bit from being used.

Bit 5: Transmit Bit 6 Suppress (TBSE6) Set to one to stop this bit from being used.

Bit 4: Transmit Bit 5 Suppress (TBSE5) Set to one to stop this bit from being used.

Bit 3: Transmit Bit 4 Suppress (TBSE4) Set to one to stop this bit from being used.

Bit 2: Transmit Bit 3 Suppress (TBSE3) Set to one to stop this bit from being used.

Bit 1: Transmit Bit 2 Suppress (TBSE2) Set to one to stop this bit from being used.

Bit 0 : Transmit Bit 1 Suppress (TBSE1) LSB of the channel. Set to one to stop this bit from being used.

11.5.14.1 Transmit HDLC FIFO Control

Register Name: THFC

Register Description: Transmit HDLC FIFO Control Register

Address (hex): $187h + (200h \times n)$: where n = 0 to 3, for Ports 1 to 4

Bit#	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	TFLWM1	TFLWM0
Default	0	0	0	0	0	0	0	0

Bits 7 to 2: Unused. Must be set = 0 for proper operation.

Bits 1 to 0 : Transmit HDLC FIFO Low Watermark Select (TFLWM0 to TFLWM1)

TFLWM1	TFLWM0	Transmit FIFO Watermark
0	0	4 bytes
0	1	16 bytes
1	0	32 bytes
1	1	48 bytes

11.5.14.2 HDLC Status and Information

TLS2 provides status information for the transmit HDLC controller. When a particular event has occurred (or is occurring), the appropriate bit in one of these registers will be set to a one. Some of the bits in these registers are latched and some are real time bits that are not latched. This section contains register descriptions that list which bits are latched and which are real time. With the latched bits, when an event occurs and a bit is set to a one, it will remain set until the user reads that bit. The bit will be cleared when it is read and it will not be set again until the event has occurred again. The real time bits report the current instantaneous conditions that are occurring and the history of these bits is not latched.

Like the other latched status registers, the user will follow a read of the status bit with a write. The byte written to the register will inform the device which of the latched bits the user wishes to clear (the real-time bits are not affected by writing to the status register). The user will write a byte to one of these registers, with a one in the bit positions he or she wishes to clear and a zero in the bit positions he or she does not wish to clear.

The HDLC status register, TLS2 has the ability to initiate a hardware interrupt via the $\overline{\text{INT}}$ output signal. Each of the events in this register can be either masked or unmasked from the interrupt pin via the receive HDLC Interrupt Mask Register (TIM2). Interrupts will force the $\overline{\text{INT}}$ signal low when the event occurs. The $\overline{\text{INT}}$ pin will be allowed to return high (if no other interrupts are present) when the user reads the event bit that caused the interrupt to occur.

Register Name: TRTS2

Register Description: Transmit Real-Time Status Register 2 (HDLC)

Address (hex): $1B1h + (200h \times n)$: where n = 0 to 3, for Ports 1 to 4

Bit#	7	6	5	4	3	2	1	0
Name			_		TEMPTY	TFULL	TLWM	TNF
Default	0	0	0	0	0	0	0	0

All bits in this register are real time.

Bits 7 to 4: Unused. Must be set = 0 for proper operation.

Bit 3: Transmit FIFO Empty (TEMPTY) A real-time bit that is set high when the FIFO is empty.

Bit 2: Transmit FIFO Full (TFULL) A real-time bit that is set high when the FIFO is full.

Bit 1 : Transmit FIFO Below Low Watermark Condition (TLWM) Set when the transmit 64-byte FIFO empties beyond the low watermark as defined by the Transmit Low Watermark Bits (TLWM).

Bit 0: Transmit FIFO Not Full Condition (TNF) Set when the transmit 64-byte FIFO has at least 1 byte available.

Register Name: TLS2

Register Description: Transmit Latched Status Register 2 (HDLC)

Address (hex): $191h + (200h \times n)$: where n = 0 to 3, for Ports 1 to 4

Bit#	7	6	5	4	3	2	1	0
Name	_	_	_	TFDLE	TUDR	TMEND	TLWMS	TNFS
Default	0	0	0	0	0	0	0	0

All bits in this register are latched and can create interrupts.

Bits 7 to 5 : Unused. Must be set = 0 for proper operation.

- **Bit 4 : Transmit FDL Register Empty (TFDLE)** Set when the TFDL register has shifted out all 8 bits. Useful if the user wants to manually use the TFDL register to send messages, instead of using the HDLC or BOC controller circuits.
- **Bit 3 : Transmit FIFO Underrun Event (TUDR)** Set when the transmit FIFO empties out without having seen the TMEND bit set. An abort is automatically sent.
- **Bit 2 : Transmit Message End Event (TMEND)** Set when the transmit HDLC controller has finished sending a message.
- **Bit 1 : Transmit FIFO Below Low Watermark Set Condition (TLWMS)** Set when the transmit 64-byte FIFO empties beyond the low watermark as defined by the Transmit Low Watermark Bits (TLWM) (rising edge detect of TLWM).
- **Bit 0 : Transmit FIFO Not Full Set Condition (TNFS)** Set when the transmit 64–byte FIFO has at least one empty byte available for write. Rising edge detect of TNF. Indicates change of state from full to not full.

Register Name: TIM2

Register Description: Transmit Interrupt Mask Register 2

Address (hex): $1A1h + (200h \times n)$: where n = 0 to 3, for Ports 1 to 4

Bit# 6 3 2 TLWMS Name **TFDLE TUDR TMEND TNFS** Default 0 0 0 0 0 0 0 0

Bits 7 to 5: Unused. Must be set = 0 for proper operation.

Bit 4: Transmit FDL Register Empty (TFDLE)

0 = interrupt masked

1 = interrupt enabled

Bit 3: Transmit FIFO Underrun Event (TUDR)

0 = interrupt masked

1 = interrupt enabled

Bit 2 : Transmit Message End Event (TMEND)

0 = interrupt masked

1 = interrupt enabled

Bit 1: Transmit FIFO Below Low Watermark Set Condition (TLWMS)

0 = interrupt masked

1 = interrupt enabled

Bit 0: Transmit FIFO Not Full Set Condition (TNFS)

0 = interrupt masked

1 = interrupt enabled

11.5.14.3 FIFO Information

The Transmit FIFO Buffer Available register indicates the number of bytes that can be written into the transmit FIFO. The count from this register informs the host as to how many bytes can be written into the transmit FIFO without overflowing the buffer. This is a real-time register. The count shall remain valid and stable during the read cycle.

Register Name: TFBA

Register Description: Transmit HDLC FIFO Buffer Available

Address (hex): $1B3h + (200h \times n)$: where n = 0 to 3, for Ports 1 to 4

Bit# 6 4 0 TFBA6 TFBA4 TFBA2 TFBA0 Name TFBA5 TFBA3 TFBA1 Default 0 0 0 0 0 0 0

Bits 0 to 6: Transmit FIFO Bytes Available (TFBAO to TFBA6) TFBA0 is the LSB.

Register Name: THF

Register Description: Transmit HDLC FIFO

Address (hex): $1B4h + (200h \times n)$: where n = 0 to 3, for Ports 1 to 4

Bit # 7 6 5 4 3 2 1 0 THD7 THD5 THD4 THD1 Name THD6 THD3 THD2 THD0 Default 0 0 0 0 0 0 0 0

Bit 7: Transmit HDLC Data Bit 7 (THD7) MSB of a HDLC packet data byte.

Bit 6: Transmit HDLC Data Bit 6 (THD6)

Bit 5 : Transmit HDLC Data Bit 5 (THD5)

Bit 4 : Transmit HDLC Data Bit 4 (THD4)

Bit 3: Transmit HDLC Data Bit 3 (THD3)

Bit 2: Transmit HDLC Data Bit 2 (THD2)

Bit 1: Transmit HDLC Data Bit 1 (THD1)

Bit 0: Transmit HDLC Data Bit 0 (THD0) LSB of a HDLC packet data byte.

11.5.15 Programmable In-Band Loop-Code Generator

This register definition is repeated here for convenience.

Register Name: TCR4

Register Description: Transmit Control Register 4

Address (hex): $186h + (200h \times n)$: where n = 0 to 3, for Ports 1 to 4

Bit# 7 2 6 5 4 3 1 0 Name TRAIM TAISM TC1 TC0 Default 0 0 0 0 0 0 0 0

Bits 7 to 4: Unused. Must be set = 0 for proper operation.

Bit 3: Transmit RAI Mode (TRAIM) Determines the pattern sent when TRAI (TCR1.0) is activated in ESF frame mode only.

0 = transmit normal RAI upon activation with TCR1.0

1 = transmit RAI-CI (T1.403) upon activation with TCR1.0

Bit 2: Transmit AIS Mode (TAISM) Determines the pattern sent when TAIS (TCR1.1) is activated.

0 = transmit normal AIS (unframed all ones) upon activation with TCR1.1

1 = transmit AIS-CI (T1.403) upon activation with TCR1.1

Bits 1 to 0: Transmit Code Length Definition Bits (TC0 to TC1)

TC1	TC0	LENGTH SELECTED (BITS)
0	0	5
0	1	6/3
1	0	7
1	1	16/8/4/2/1

Register Name: TCD1

Register Description: Transmit Code Definition Register 1

Address (hex): $1ACh + (200h \times n)$: where n = 0 to 3, for Ports 1 to 4

Bit# 7 6 5 2 1 0 C7 C6 C5 C4 C2 C1 C0 Name C3 Default 0 0 0 0 0 0 0 0

Bit 7: Transmit Code Definition Bit 7 (C7) First bit of the repeating pattern.

Bit 6: Transmit Code Definition Bit 6 (C6)

Bit 5: Transmit Code Definition Bit 5 (C5)

Bit 4: Transmit Code Definition Bit 4 (C4)

Bit 3: Transmit Code Definition Bit 3 (C3)

Bit 2: Transmit Code Definition Bit 2 (C2) A Don't Care if a 5-bit length is selected.

Bit 1: Transmit Code Definition Bit 1 (C1) A Don't Care if a 5- or 6-bit length is selected.

Bit 0: Transmit Code Definition Bit 0 (C0) A Don't Care if a 5-, 6-, or 7-bit length is selected.

Register Name: TCD2

Register Description: Transmit Code Definition Register 2

Address (hex): $1ADh + (200h \times n)$: where n = 0 to 3, for Ports 1 to 4

Bit#	7	6	5	4	3	2	1	0
Name	C7	C6	C5	C4	C3	C2	C1	C0
Default	0	0	0	0	0	0	0	0

Bits 0 to 7: Transmit Code Definition Bit 0 to 7 (C0 to C7) A Don't Care if a 5-, 6-, or 7-bit length is selected.

11.5.16 Interfacing the T1 Tx Formatter to the BERT

Register Name: TBICR

Register Description: Transmit BERT Interface Control Register

Address (hex): $18Ah + (200h \times n)$: where n = 0 to 3, for Ports 1 to 4

Bit#	7	6	5	4	3	2	1	0
Name			_	_	_	TBDC	TBFUS	TBEN
Default	0	0	0	0	0	0	0	0

Bits 7 to 3: Unused. Must be set = 0 for proper operation.

Bit 2 : Transmit BERT Direction Control (TBDC)

0 = Transmit Path: The BERT transmits toward the network.

1 = Backplane: The BERT transmits toward the system backplane.

Bit 1 : Transmit BERT Framed/Unframed Select (TBFUS)

0 = The framer will not provide data from the F-bit position (framed)

1 = The framer will clock data from the F-bit position (unframed)

Bit 0 : Transmit BERT Enable (TBEN)

0 = Transmit BERT is disabled.

1 = Transmit BERT is enabled.

Register Name: TBCS1, TBCS2, TBCS3

Register Description: Transmit BERT Channel Select Registers

Address (hex): 0D4h, 0D5h, 0D6h [+ (200h x n) : where n = 0 to 3, for Ports 1 to 4]

Setting any of the CH1 through CH24 bits in the TBCS1 through TBCS3 registers will map data from those channels to the on-board BERT. TBEN must be set to one for these registers to function. Multiple, or all channels may be selected simultaneously. These registers affect the transmit-side framer only.

(MSB)							(LSB)	
CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	TBCS1
CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	TBCS2
CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	TBCS3

Register Name: TBBS

Register Description: Transmit BERT Bit Suppress Register

Address (hex): 18Bh

Bit#	7	6	5	4	3	2	1	0
Name	BSE8	BSE7	BSE6	BSE5	BSE4	BSE3	BSE2	BSE1
Default	0	0	0	0	0	0	0	0

Bit 7: Transmit Channel Bit 8 Suppress (BSE8) MSB of the channel. Set to one to stop this bit from being used.

Bit 6: Transmit Channel Bit 7 Suppress (BSE7) Set to one to stop this bit from being used.

Bit 5: Transmit Channel Bit 6 Suppress (BSE6) Set to one to stop this bit from being used.

Bit 4 : Transmit Channel Bit 5 Suppress (BSE5) Set to one to stop this bit from being used.

Bit 3: Transmit Channel Bit 4 Suppress (BSE4) Set to one to stop this bit from being used.

Bit 2: Transmit Channel Bit 3 Suppress (BSE3) Set to one to stop this bit from being used.

Bit 1: Transmit Channel Bit 2 Suppress (BSE2) Set to one to stop this bit from being used.

Bit 0 : Transmit Channel Bit 1 Suppress (BSE1) LSB of the channel. Set to one to stop this bit from being used.

11.5.17 T1 Transmit Synchronizer

When enabled, the DS26556 transmitter has the ability to identify the D4 or ESF frame boundary within the incoming NRZ data stream at TSER. The TFM (TCR3.2) control bit determines whether the transmit synchronizer searches for the D4 or ESF multiframe. Additional control signals for the transmit synchronizer are located in the TSYNCC register. The Transmit Latched Status 3 (TLS3) register provides a latched status bit (LOFD) to indicate that a Loss-of-Frame synchronization has occurred, and a real-time bit (LOF) which is set high when the synchronizer is searching for frame/multiframe alignment. The LOFD bit can be enabled to cause an interrupt condition on $\overline{\text{INT}}$.

Note that when the transmit synchronizer is used, the TSYNC signal should be set as an output (TSIO = 1) and the recovered frame sync pulse will be output on this signal. The recovered multiframe sync pulse will be output if enabled with TIOCR.0 (TSM = 1).

Register Name: TSYNCC

Register Description: Transmit Synchronizer Control Register

Address (hex): $18Eh + (200h \times n)$: where n = 0 to 3, for Ports 1 to 4

Bit#	7	6	5	4	3	2	1	0
Name	_		_		_	TSEN	SYNCE	RESYNC
Default	0	0	0	0	0	0	0	0

Bits 7 to 3: Unused. Must be set = 0 for proper operation.

Bit 2: Transmit Synchronizer Enable (TSEN)

0 = Transmit Synchronizer Disabled

1 = Transmit Synchronizer Enabled

Bit 1 : Sync Enable (SYNCE)

0 = auto resync enabled

1 = auto resync disabled

Bit 0: Resynchronize (RESYNC)

When toggled from low to high, a resynchronization of the transmit side framer is initiated. Must be cleared and set again for a subsequent resync.

Register Name: TLS3

Register Description: Transmit Latched Status Register 3 (Synchronizer)
Address (hex): 192h + (200h x n): where n = 0 to 3, for Ports 1 to 4

Bit#	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	LOF	LOFD
Default	0	0	0	0	0	0	0	0

Bits 7 to 2: Unused. Must be set = 0 for proper operation.

Bit 1 : Loss of Frame (LOF) A real-time bit that indicates that the transmit synchronizer is searching for the sync pattern in the incoming data stream.

Bit 0 : Loss Of Frame Synchronization Detect (LOFD) This latched bit is set when the transmit synchronizer is searching for the sync pattern in the incoming data stream.

Register Name: TIM3

Register Description: Transmit Interrupt Mask Register 3 (Synchronizer)
Address (hex): 1A2h + (200h x n): where n = 0 to 3, for Ports 1 to 4

Bit#	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	_	LOFD
Default	0	0	0	0	0	0	0	0

Bits 7 to 1: Unused. Must be set = 0 for proper operation.

Bit 0 : Loss Of Frame Synchronization Detect (LOFD)

0 = Interrupt Masked 1 = Interrupt Enabled

11.6 E1 Receive Framer

Table 11-15 E1 Receive Framer Register Map

ADDRESS (hex)			
PORT 1 + 0h			
PORT 2 + 200h	NAME	FUNCTION	
PORT 3 + 400h	INAIVIE	FUNCTION	
PORT 4 + 600h			
0049	RS10	Rx Signaling 10	
0045 004A	RS11	Rx Signaling 11	
004B	RS12	Rx Signaling 12	
004C	RS13	Rx Signaling 13	
004D	RS14	Rx Signaling 14	
004E	RS15	Rx Signaling 15	
004F	RS16	Rx Signaling 16	
0050	LCVCR1	Rx Line-Code Violation Counter 1	
0051	LCVCR2	Rx Line-Code Violation Counter 2	
0052	PCVCR1	Rx Path-Code Violation Counter 1	
0053	PCVCR2	Rx Path-Code Violation Counter 2	
0054	FOSCR1	Rx Frames Out-of-Sync Counter 1	
0055	FOSCR2	Rx Frames Out-of-Sync Counter 2	
0056	EBCR1	Receive E-Bit Counter 1	
0057	EBCR2	Receive E-Bit Counter 2	
0058-005F	_	Unused. Must be set = 0 for proper operation	
0060	RDS0M	Rx DS0 Monitor	
0061		Unused. Must be set = 0 for proper operation	
0062	RRTS7	Receive Real-Time Status 7	
0063	_	Unused. Must be set = 0 for proper operation	
0064	RAF	Receive Align Frame	
0065	RNAF	Receive Non-Align Frame	
0066	RSiAF	Receive Si Bits for Align Frame	
0067	RSiNAF	Receive Si Bits for Non-Align Frame	
0068	RRA	Receive Remote Alarm Bits	
0069 006A	RSa4 RSa5	Receive Sa4 Bits	
006B	RSa6	Receive Sa5 Bits Receive Sa6 Bits	
006C	RSa7	Receive Sa7 Bits	
006D	RSa8	Receive Sa8 Bits	
006E-007F		Unused. Must be set = 0 for proper operation	
0800	RMMR	Rx Master Mode	
0081	RCR1	Rx Control 1	
0082	RCR2	Rx Control 2	
0083	RCR3	Rx Control 3	
0084	RIOCR	Rx I/O Configuration	
0085	RGCCR	Rx Gapped Clock Control	
0086	ERCNT	Rx Error Count Configuration	
0087	RHFC	Rx HDLC FIFO Control	
0088	-	Unused. Must be set = 0 for proper operation	
0089	_	Unused. Must be set = 0 for proper operation	
A800	RBICR	Rx BERT Interface Control	
008B	RBBS	Rx BERT Bit Suppress Enable	
008C - 008F		Unused. Must be set = 0 for proper operation	
0090	RLS1	Rx Latched Status 1	
0091	RLS2	Rx Latched Status 2	
0092	RLS3	Rx Latched Status 3	
0093	RLS4	Rx Latched Status 4	
0094	RLS5	Rx Latched Status 5 (HDLC)	
0095		Unused. Must be set = 0 for proper operation.	
0096	_	Unused. Must be set = 0 for proper operation.	
0097	_	Unused. Must be set = 0 for proper operation.	

ADDRESS (hex)		
PORT 1 + 0h		
PORT 2 + 200h	NAME	FUNCTION
PORT 3 + 400h		
PORT 4 + 600h	5001	
0098	RSS1	Rx Signaling Change-of-State Status 1
0099	RSS2	Rx Signaling Change-of-State Status 2
009A	RSS3	Rx Signaling Change-of-State Status 3
009B	RSS4	Rx Signaling Change-of-State Status 4
009C		Unused. Must be set = 0 for proper operation.
009D		Unused. Must be set = 0 for proper operation.
009E		Unused. Must be set = 0 for proper operation.
009F	RIIR	Rx Interrupt Information Reg
00A0	RIM1	Rx Interrupt Mask Reg 1
00A1	RIM2	Rx Interrupt Mask Reg 2
00A2	RIM3	Rx Interrupt Mask Reg 3
00A3	RIM4	Rx Interrupt Mask Reg 4
00A4	RIM5	Rx Interrupt Mask Reg 5 (HDLC)
00A5		Unused. Must be set = 0 for proper operation.
00A6	_	Unused. Must be set = 0 for proper operation.
00A7		Unused. Must be set = 0 for proper operation
00A8	RSCSE1	Rx Signaling Change-of-State Enable 1
00A9	RSCSE2	Rx Signaling Change-of-State Enable 2
00AA	RSCSE3	Rx Signaling Change-of-State Enable 3
00AB	RSCSE4	Rx Signaling Change-of-State Enable 4
00AC-00AF		Unused. Must be set = 0 for proper operation.
00B0	RRTS1	Rx Real-Time Status 1
00B1		Unused. Must be set = 0 for proper operation.
00B2	RRTS3	Rx Real-Time Status 3
00B3		Unused. Must be set = 0 for proper operation.
00B4	RRTS5	Rx Real-Time Status 5 (HDLC)
00B5	RHPBA	Rx HDLC Packet Bytes Available
00B6	RHF	Rx HDLC FIFO
00B7-00C3	-	Unused. Must be set = 0 for proper operation.
00C4	RCMR1	Rx Channel Mark 1
00C5	RCMR2	Rx Channel Mark 2
00C6	RCMR3	Rx Channel Mark 3
00C7	RCMR4	Rx Channel Mark 4
00C8	RSI1	Rx Signaling Insertion 1
00C9	RSI2	Rx Signaling Insertion 2
00CA	RSI3	Rx Signaling Insertion 3
00CB	RSI4	Rx Signaling Insertion 4
00CC	RGCCS1	Rx Gapped Clock Channel Select 1
00CD	RGCCS2	Rx Gapped Clock Channel Select 2
00CE	RGCCS3	Rx Gapped Clock Channel Select 3
00CF	RGCCS4	Rx Gapped Clock Channel Select 4
00D0	RCICE1	Rx Channel Idle Code Enable 1
00D1	RCICE2	Rx Channel Idle Code Enable 2
00D2	RCICE3	Rx Channel Idle Code Enable 3
00D3	RCICE4	Rx Channel Idle Code Enable 4
00D4	RBCS1	Rx BERT Channel Select 1
00D5	RBCS2	Rx BERT Channel Select 2
00D6	RBCS3	Rx BERT Channel Select 3
00D7	RBCS4	Rx BERT Channel Select 4
00D8 – 00DF	_	Unused. Must be set = 0 for proper operation.

11.6.1 E1 Receive Framer Description and Operation

Four fully independent DS1/E1 framers are included within the DS26556. Each framer can be individually programmed to accept AMI, HDB3 (E1), B8ZS (T1), or NRZ data. In E1 mode each framer supports FAS, CRC-4, and CAS frame formats, and detects/reports common alarms such as AIS, RAI, LOS, and LOF. Performance monitor counters are maintains for each port which report bipolar/line code violations, CRC-4 errors, FAS errors, and E-bits.

Each framer has an HDLC controller which can be mapped into a single time slot, or Sa4 to Sa8 bits (E1 Mode) or the FDL (T1 Mode) and includes 64 byte FIFO buffers in both the transmit and receive paths.

Host interface is simplified with status registers optimized for either interrupt driven or polled environments. In many cases, status bits are reported both real-time and latched on change-of-state with separate bits for each state change. Most latched bits can be mapped to generate an external interrupt on the $\overline{\text{INT}}$ pin.

Additional details concerning the operation of the E1 framer are included within the register descriptions within this section.

11.6.2 Receive Master Mode Register

The Receive Master Mode Register (RMMR) controls the initialization of the receive side framer. The FRM_EN bit may be left 'low' if the framer for that particular port is not going to be used, putting the circuit in a low-power (sleep) state.

Register Name: RMMR

Register Description: Receive Master Mode Register

Address (hex): 0080, 0280, 0480, 0680

Bit#	7	6	5	4	3	2	1	0
Name	FRM_EN	INIT_DONE	_	_	_	_	SFTRST	T1/E1
Default	0	0	0	0	0	0	0	0

Bit 7: Framer Enable (FRM_EN) This bit must be written with the desired value prior to setting INIT_DONE.

0 = Framer disabled – held in low power state

1 = Framer enabled – all features active

Bit 6 : Initialization Done (INIT_DONE) The host (user) must set this bit once he/she has written the configuration registers. The host is required to write or clear all RAM based registers (addresses 00H to 7FH) prior to setting this bit. Once INIT_DONE is set, the internal processor will check the FRM_EN bit. If enabled, the internal processor continues executing based on the initial configuration.

Bits 5 to 2: Unused. Must be set = 0 for proper operation.

Bit 1 : Soft Reset (SFTRST) Level sensitive processor reset. Should be taken high then low to reset and initialize the internal processor.

0 = Normal operation

1 = Hold the internal RISC in reset. This bit only affects the receive side processor.

Bit 0 : Receiver T1/E1 Mode Select (T1/E1) Sets operating mode for receiver only! This bit must be set to the desired state before writing INIT_DONE.

0 = T1 operation

1 = E1 operation

11.6.3 Interrupt Information Registers

The Interrupt Information Registers provide an indication of which DS26556 Status Registers are generating an interrupt. When an interrupt occurs, the host can read RIIR to quickly identify which of the 6 E1 receive status registers are causing the interrupt. The Interrupt Information Register bits will clear once the appropriate interrupt has been serviced and cleared, as long as no other interrupt condition is present in the associated status register. Status bits that have been masked via the Receive Interrupt Mask (RIMx) registers, will also be masked from the IIR registers.

Register Name: RIIR

Register Description: Receive Interrupt Information Register

Address (hex): 009F, 029F, 049F, 069F

Bit#	7	6	5	4	3	2	1	0
Name			RLS6	RLS5	RLS4	RLS3	RLS2	RLS1
Default	0	0	0	0	0	0	0	0

11.6.4 E1 Receive Control Registers

Register Name: RCR1

Register Description: Receive Control Register 1
Address (hex): 0081, 0281, 0481, 0681

Bit#	7	6	5	4	3	2	1	0
Name	_	RHDB3	RSIGM	RG802	RCRC4	FRC	SYNCE	RESYNC
Default	0	0	0	0	0	0	0	0

Bit 7 : Unused. Must be set = 0 for proper operation.

Bit 6: Receive HDB3 Enable (RHDB3)

0 = HDB3 disabled

1 = HDB3 enabled

Bit 5 : Receive Signaling Mode Select (RSIGM)

0 = CAS signaling mode

1 = CCS signaling mode

Bit 4: Receive G.802 Enable (RG802)

0 = do not force RCHMRK high during bit 1 of time slot 26

1 = force RCHMRK high during bit 1 of time slot 26

Bit 3: Receive CRC4 Enable (RCRC4)

0 = CRC4 disabled

1 = CRC4 enabled

Bit 2 : Frame Resvnc Criteria (FRC)

0 = resync if FAS received in error 3 consecutive times

1 = resync if FAS or bit 2 of non-FAS is received in error 3 consecutive times

Bit 1 : Sync Enable (SYNCE)

0 = auto resync enabled

1 = auto resync disabled

Bit 0 : Resynchronize (RESYNC)

When toggled from low to high, a resynchronization of the receive-side framer is initiated. Must be cleared and set again for a subsequent resync.

Figure 11-2 E1 Sync/Resync Criteria

FRAME OR MULTIFRAME LEVEL	SYNC CRITERIA	RESYNC CRITERIA	ITU SPEC.	
	FAS present in frame N and N	Three consecutive incorrect FAS received		
FAS	+ 2, and FAS not present in frame N + 1	Alternate: (RCR1.2 = 1) The above criteria is met or three consecutive incorrect bit 2 of non-FAS received	G.706 4.1.1 and 4.1.2	
CRC4	Two valid MF alignment words found within 8 ms	915 or more CRC4 code words out of 1000 received in error	G.706 4.2 and 4.3.2	
CAS	Valid MF alignment word found. Alternate: (RSIGC.4 = 1) Valid MF alignment word found and previous time slot 16 contains code other than all zeros.	Two consecutive MF alignment words received in error or for a period of 1 multiframe, all the bits in time slot 16 are zero. Alternate: (RSIGC.4 = 1) The above criteria are met or 1 multiframe is received with all bits in time slot 16 set to 0.	G.732 5.2	

Register Name: RCR2

Register Description: Receive Control Register 2
Address (hex): 0082, 0282, 0482, 0682

Bit #	7	6	5	4	3	2	1	0
Name		_	_		_	_	_	RLOSA
Default	0	0	0	0	0	0	0	0

Bits 7 to 1: Unused. Must be set = 0 for proper operation.

Bit 0 : Receive Loss of Signal Alternate Criteria (RLOSA) Defines the criteria for an LOS condition.

0 = LOS declared upon 255 consecutive zeros (125 μ s)

1 = LOS declared upon 2048 consecutive zeros (1ms)

Register Name: RCR3

Register Description: Receive Control Register 3
Address (hex): 0083, 0283, 0483, 0683

Bit#	7	6	5	4	3	2	1	0
Name	IDF	_	RSERC	_	_	RLB	PLB	FLB
Default	0	0	0	0	0	0	0	0

Bit 7 : Input Data Format (IDF)

0 = Bipolar data is expected at RPOS and RNEG (either AMI or B8ZS)

1 = NRZ data is expected at RPOS. The BPV counter will be disabled and RNEG will be ignored by the DS26556.

Bit 6 : Unused. Must be set = 0 for proper operation.

Bit 5 : RSER Control (RSERC)

0 = allow RSER to output data as received under all conditions (normal operation)

1 = force RSER to one under loss of frame alignment conditions

Bits 4 & 3: Unused. Must be set = 0 for proper operation.

Bit 2 : Remote Loopback (RLB)

0 = loopback disabled

1 = loopback enabled

Bit 1: Payload Loopback (PLB)

0 = loopback disabled

1 = loopback enabled

When PLB is enabled, the following will occur:

- 1) Data will be transmitted at the TTIP and TRING pins synchronous with RCLK instead of TCLK
- 2) All of the receive side signals will continue to operate normally
- 3) The TCHMKR signal is forced low
- 4) Data at the TDATAI pin is ignored

Normally, this loopback is only enabled when ESF framing is being performed but can be enabled also in D4 framing applications. In a PLB situation, the DS26556 will loop the 192 bits of payload data (with BPVs corrected) from the receive section back to the transmit section. The FPS framing pattern, CRC6 calculation, and the FDL bits are not looped back, they are reinserted by the DS26556.

In this loopback, data input via the RTIP and RRING pins will be transmitted back to the TTIP and TRING pins. Data will continue to pass through the receive side framer of the DS26556 as it would normally and the data from the transmit side formatter will be ignored.

Bit 0 : Framer Loopback (FLB)

0 = loopback disabled

1 = loopback enabled

This loopback is useful in testing and debugging applications. In FLB, the DS26556 will loop data from the transmit side back to the receive side. When FLB is enabled, the following will occur:

- (T1 mode) an unframed all one's code will be transmitted at TTIP and TRING (E1 mode) normal data will be transmitted at TTIP and TRING
- 2) Data at RPOS and RNEG will be ignored
- 3) All receive side signals will take on timing synchronous with TCLK instead of RCLK. Please note that it is not acceptable to have RCLK tied to TCLK during this loopback because this will cause an unstable condition.

Register Name: RIOCR

Register Description: Receive I/O Configuration Register

Address (hex): 0084, 0284, 0484, 0684

Bit# 2 0 6 4 3 RCLKINV **RSYNCINV** H100EN **HSCLKM** Name RSMS2 RSMS1 0 0 Default 0 0

Bit 7: RCLK Invert (RCLKINV)

0 = No inversion

1 = Invert RCLK input

Bit 6: RSYNC Invert (RSYNCINV)

0 = No inversion

1 = Invert RSYNC as either input or output

Bit 5: H.100 SYNC Mode (H100EN). See Section 8.6.1.

0 = Normal operation

1 = HSSYNC shifted

Bit 4: HSYSCLK Mode Select (RSCLKM)

0 = if HSYSCLK is 1.544MHz

1 = if HSYSCLK is 2.048MHz

Bits 3 & 2 : Unused. Must be set = 0 for proper operation.

Bit 1: RSYNC Mode Select 2 (RSMS2)

T1: RSYNC pin must be programmed in the output frame mode

0 = do not pulse double wide in signaling frames

1 = do pulse double wide in signaling frames

E1: RSYNC pin must be programmed in the output multiframe mode

0 = RSYNC outputs CAS multiframe boundaries

1 = RSYNC outputs CRC4 multiframe boundaries

Bit 0: RSYNC Mode Select 1 (RSMS1) Selects frame or multiframe pulse at RSYNC pin.

0 = frame mode

1 = multiframe mode

11.6.5 E1 Receive Status and Information

When a particular event has occurred (or is occurring), the appropriate bit in one of these registers will be set to a one. Status bits may operate in either a latched or real-time fashion. Some latched bits may be enabled to generate a hardware interrupt via the $\overline{\text{INT}}$ signal.

Real-Time Bits

Some status bits operate in a real-time fashion. These bits are read-only and indicate the present state of an alarm or a condition. Real-time bits remain stable and valid during the host read operation. The current value of the internal status signals can be read at any time from the real time status registers without changing any the latched status register bits

Latched Bits

When an event or an alarm occurs and a latched bit is set to a one, it will remain set until cleared by the user. These bits typically respond on a change-of-state for an alarm, condition, or event; and operate in a read-then-write fashion. The user should read the value of the desired status bit, and then write a 1 to that particular bit location in

order to clear the latched value (write a 0 to locations not to be cleared). Once the bit is cleared, it will not be set again until the event has occurred again.

Mask Bits

Some of the alarms and events can be either masked or unmasked from the interrupt pin via the Interrupt Mask Registers (RIMx). When unmasked, the $\overline{\text{INT}}$ signal will be forced low when the enabled event or condition occurs. The $\overline{\text{INT}}$ pin will be allowed to return high (if no other unmasked interrupts are present) when the user reads then clears (with a write) the alarm bit that caused the interrupt to occur. Note that the latched status bit and the INT pin will clear even if the alarm is still present.

Note that some conditions may have multiple status indications. For example, Receive Loss of Frame (RLOF) provides the following indications:

RRTS1.0 (RLOF)	Real-time indication that the receiver is not synchronized with incoming data stream. Read-only bit that remains high as long as the condition is present.
RLS1.0 (RLOFD)	Latched indication that the receiver has loss synchronization since the bit was last cleared. Bit will clear when written by the user, even if the condition is still present (rising edge detect of RRTS1.0).
RLS1.4 (RLOFC)	Latched indication that the receiver has reacquired synchronization since the bit was last cleared. Bit will clear when written by the user, even if the condition is still present (falling edge detect of RRTS1.0).

Table 11-16 E1 Alarm Criteria

ALARM	SET CRITERIA	CLEAR CRITERIA	ITU SPEC.
RLOF	An RLOF condition exist on power up prior to initial synchronization, when a resync criteria has been met, or when a manual resync has been initiated via RCR1.0		
RLOS	255 or 2048 consecutive zeros received as determined by RCR2.0	In 255-bit times, at least 32 ones are received	G.775/G.962
RRAI	Bit 3 of non-align frame set to one for three consecutive occasions	Bit 3 of non-align frame set to zero for three consecutive occasions	O.162
RAIS	Fewer than three zeros in two frames (512 bits)	More than two zeros in two frames (512 bits)	O.162
RDMA	Bit 6 of time slot 16 in frame 0 has been set for two consecutive multiframes		
V52LNK	2 out of 3 Sa7 bits are zero		G.965

Register Name: RRTS1

Register Description: Receive Real-Time Status Register 1

Address (hex): 00B0, 02B0, 04B0, 06B0

Bit#	7	6	5	4	3	2	1	0
Name	_	_	_	_	RRAI	RAIS	RLOS	RLOF
Default	0	0	0	0	0	0	0	0

All bits in this register are real-time (not latched).

Bits 7 to 4 : Unused. Must be set = 0 for proper operation

Bit 3 : Receive Remote Alarm Indication Condition (RRAI) Set when a remote alarm is received at RPOS and RNEG.

Bit 2 : Receive Alarm Indication Signal Condition (RAIS) Set when an unframed all one's code is received at RPOS and RNEG.

Bit 1 : Receive Loss of Signal Condition (RLOS) Set when 255 (or 2048 if RCR2.0 = 1) consecutive zeros have been detected at RPOS and RNEG.

Bit 0 : Receive Loss of Frame Condition (RLOF) Set when the DS26556 is not synchronized to the received data stream.

Register Name: RLS1

Register Description: Receive Latched Status Register 1

Address (hex): 0090, 0290, 0490, 0690

Bit#	7	6	5	4	3	2	1	0
Name	RRAIC	RAISC	RLOSC	RLOFC	RRAID	RAISD	RLOSD	RLOFD
Default	0	0	0	0	0	0	0	0

All bits in this register are latched and can create interrupts.

- **Bit 7 : Receive Remote Alarm Condition Clear (RRAIC)** Change of state indication. Set when a RRAI condition has cleared (falling edge detect of RRAI).
- **Bit 6 : Receive AIS Condition Clear (RAISC)** Change of state indication. Set when a RAIS condition has cleared (falling edge detect of RAIS).
- **Bit 5 : Receive Loss of Signal Condition Clear (RLOSC)** Change of state indication. Set when an RLOS condition has cleared (falling edge detect of RLOS).
- **Bit 4 : Receive Loss of Frame Condition Clear (RLOFC)** Change of state indication. Set when an RLOF condition has cleared (falling edge detect of RLOF).
- **Bit 3 : Receive Remote Alarm Condition Detect (RRAID)** Change of state indication. Set when a remote alarm is received at RPOS and RNEG (rising edge detect of RRAI).
- Bit 2: Receive AIS Condition Detect (RAISD) Change of state indication. Set when an unframed all one's code is received at RPOS and RNEG (rising edge detect of RAIS).
- **Bit 1 : Receive Loss of Signal Condition Detect (RLOSD)** Change of state indication. Set when 255 (or 2048 if RCR2.0 = 1) consecutive zeros have been detected at RPOS and RNEG (rising edge detect of RLOS).
- **Bit 0 : Receive Loss of Frame Condition Detect (RLOFD)** Change of state indication that the DS26556 has lost synchronized to the received data stream (rising edge detect of RLOF).

Register Name: RIM1

Register Description: Receive Interrupt Mask Register 1

Address (hex): 00A0, 02A0, 04A0, 06A0

Bit#	7	6	5	4	3	2	1	0
Name	RRAIC	RAISC	RLOSC	RLOFC	RRAID	RAISD	RLOSD	RLOFD
Default	0	0	0	0	0	0	0	0

Bit 7: Receive Remote Alarm Clear (RRAIC)

0 = interrupt masked

1 = interrupt enabled

Bit 6: Receive AIS Clear (RAISC)

0 = interrupt masked

1 = interrupt enabled

Bit 5: Receive Loss of Signal Clear (RLOSC)

0 = interrupt masked

1 = interrupt enabled

Bit 4 : Receive Loss of Frame Clear (RLOFC)

0 = interrupt masked

1 = interrupt enabled

Bit 3 : Receive Remote Alarm Detect (RRAID)

0 = interrupt masked

1 = interrupt enabled

Bit 2 : Receive AIS Detect (RAISD)

0 = interrupt masked

1 = interrupt enabled

Bit 1 : Receive Loss of Signal Detect (RLOSD)

0 = interrupt masked

1 = interrupt enabled

Bit 0 : Receive Loss of Frame Detect (RLOFD)

0 = interrupt masked

1 = interrupt enabled

Register Name: RLS2

Register Description: Receive Latched Status Register 2

Address (hex): 0091, 0291, 0491, 0691

Bit#	7	6	5	4	3	2	1	0
Name	_	CRCRC	CASRC	FASRC	RSA1	RSA0	RCMF	RAF
Default	0	0	0	0	0	0	0	0

All bits in this register are latched. Bits 0 to 3 can cause interrupts. There is no associated real-time register.

Bit 7: Unused. Must be set = 0 for proper operation.

Bit 6: CRC Resync Criteria Met Event (CRCRC) Set when 915/1000 codewords are received in error.

Bit 5: CAS Resync Criteria Met Event (CASRC) Set when 2 consecutive CAS MF alignment words are received in error.

Bit 4: FAS Resync Criteria Met Event (FASRC) Set when 3 consecutive FAS words are received in error.

Bit 3: Receive Signaling All Ones Event (RSA1) Set when the contents of time slot 16 contain less than three zeros over 16 consecutive frames. This alarm is not disabled in the CCS signaling mode.

Bit 2: Receive Signaling All Zeros Event (RSA0) Set when over a full MF, time slot 16 contains all zeros.

Bit 1 : Receive CRC4 Multiframe Event (RCMF) Set on CRC4 multiframe boundaries; will continue to be set every 2ms on an arbitrary boundary if CRC4 is disabled.

Bit 0 : Receive Align Frame Event (RAF) Set every $250\mu s$ at the beginning of align frames. Used to alert the host that Si and Sa bits are available in the RAF and RNAF registers.

Register Name: RIM2

Register Description: Receive Interrupt Mask Register 2

Address (hex): 00A1, 02A1, 04A1, 06A1

Bit#	7	6	5	4	3	2	1	0
Name	_	_	_	_	RSA1	RSA0	RCMF	RAF
Default	0	0	0	0	0	0	0	0

Bits 7 to 4: Unused. Must be set = 0 for proper operation.

Bit 3: Receive Signaling All Ones Event (RSA1)

0 = interrupt masked

1 = interrupt enabled

Bit 2: Receive Signaling All Zeros Event (RSA0)

0 = interrupt masked

1 = interrupt enabled

Bit 1: Receive CRC4 Multiframe Event (RCMF)

0 = interrupt masked

1 = interrupt enabled

Bit 0 : Receive Align Frame Event (RAF)

0 = interrupt masked

1 = interrupt enabled

Register Name: RRTS3

Register Description: Receive Real-Time Status Register 3

Address (hex): 00B2, 02B2, 04B2, 06B2

Bit #	7	6	5	4	3	2	1	0
Name		_	_		LORC	_	V52LNK	RDMA
Default	0	0	0	0	0	0	0	0

All bits in this register are real-time (not latched).

Bits 7 to 4: Unused.

Bit 3: Loss of Receive Clock Condition (LORC) Set when the RCLK pin has not transitioned for one channel time.

Bit 2 : Unused.

Bit 1: V5.2 Link Detected Condition (V52LNK) Set on detection of a V5.2 link identification signal. (G.965).

Bit 0 : Receive Distant MF Alarm Condition (RDMA) Set when bit-6 of time slot 16 in frame 0 has been set for two consecutive multiframes. This alarm is not disabled in the CCS signaling mode.

Register Name: RLS3

Register Description: Receive Latched Status Register 3

Address (hex): 0092, 0292, 0492, 0692

Bit#	7	6	5	4	3	2	1	0
Name	LORCC	_	V52LNKC	RDMAC	LORCD	_	V52LNKD	RDMAD
Default	0	0	0	0	0	0	0	0

All bits in this register are latched and can create interrupts.

Bit 7 : Loss of Receive Clock Clear (LORCC) Change of state indication. Set when a LORC condition has cleared (falling edge detect of LORC).

Bits 6 : Unused

Bit 5 : V5.2 Link Detected Clear (V52LNKC) Change of state indication. Set when a V52LNK condition has cleared (falling edge detect of V52LNK).

Bit 4 : Receive Distant MF Alarm Clear (RDMAC) Change of state indication. Set when a RDMA condition has cleared (falling edge detect of RDMA).

Bit 3: Loss of Receive Clock Detect (LORCD) Change of state indication. Set when the RCLK pin has not transitioned for one channel time (rising edge detect of LORC).

Bits 2: Unused.

Bit 1 : V5.2 Link Detect (V52LNKD) Change of state indication. Set on detection of a V5.2 link identification signal. (G.965). This is the rising edge detect of V52LNK.

Bit 0 : Receive Distant MF Alarm Detect (RDMAD) Change of state indication. Set when bit 6 of time slot 16 in frame 0 has been set for two consecutive multiframes. This alarm is not disabled in the CCS signaling mode. This is the rising edge detect of RDMA.

Register Name: RIM3

Register Description: Receive Interrupt Mask Register 3

Address (hex): 00A2, 02A2, 04A2, 06A2

Bit#	7	6	5	4	3	2	1	0
Name	LORCC	_	V52LNKC	RDMAC	LORCD	_	V52LNKD	RDMAD
Default	0	0	0	0	0	0	0	0

Bit 7: Loss of Receive Clock Clear (LORCC)

0 = interrupt masked

1 = interrupt enabled

Bits 6 : Unused. Must be set = 0 for proper operation.

Bit 5: V5.2 Link Detected Clear (V52LNKC)

0 = interrupt masked

1 = interrupt enabled

Bit 4 : Receive Distant MF Alarm Clear (RDMAC)

0 = interrupt masked

1 = interrupt enabled

Bit 3: Loss of Receive Clock Detect (LORCD)

0 = interrupt masked

1 = interrupt enabled

Bit 2 : Unused. Must be set = 0 for proper operation.

Bit 1: V5.2 Link Detect (V52LNKD)

0 = interrupt masked

1 = interrupt enabled

Bit 0 : Receive Distant MF Alarm Detect (RDMAD)

0 = interrupt masked

1 = interrupt enabled

Register Name: RRTS7

Register Description: Receive Real-Time Status Register 7

Address (hex): **0062**, **0262**, **0462**, **0662**

Bit#	7	6	5	4	3	2	1	0
Name	CSC5	CSC4	CSC3	CSC2	CSC0	CRC4SA	CASSA	FASSA
Default	0	0	0	0	0	0	0	0

All bits in this register are real-time (not latched).

Bits 7 to 3: CRC4 Sync Counter Bits (CSC0 and CSC2 to CSC4) The CRC4 Sync Counter increments each time the 8ms CRC4 multiframe search times out. The counter is cleared when the framer has successfully obtained synchronization at the CRC4 level. The counter can also be cleared by disabling the CRC4 mode (RCR1.3 = 0). This counter is useful for determining the amount of time the framer has been searching for synchronization at the CRC4 level. ITU G.706 suggests that if synchronization at the CRC4 level cannot be obtained within 400ms, then the search should be abandoned and proper action taken. The CRC4 Sync Counter rolls over. CSC0 is the LSB of the 6-bit counter. (Note: The next to LSB is not accessible. CSC1 is omitted to allow resolution to >400ms using 5 bits.)

Bit 2: CRC4 MF Sync Active (CRC4SA) Set while the synchronizer is searching for the CRC4 MF alignment word.

Bit 1 : CAS MF Sync Active (CASSA) Set while the synchronizer is searching for the CAS MF alignment word.

Bit 0 : FAS Sync Active (FASSA) Set while the synchronizer is searching for alignment at the FAS level.

Register Name: RLS4

Register Description: Receive Latched Status Register 4

Address (hex): 0093, 0293, 0493, 0693

Bit#	7	6	5	4	3	2	1	0
Name	-	-	-	-	RSCOS	1SEC	TIMER	RMF
Default	0	0	0	0	0	0	0	0

All bits in this register are latched. There is no associated real-time register.

Bits 7 to 4: Unused

Bit 3 : Receive Signaling Change Of State Event (RSCOS) Set when any channel selected by the Receive Signaling Change Of State Interrupt Enable registers (RSCSE1 through RSCSE3), changes signaling state.

Bit 2: One-Second Timer (1SEC) Set on every one-second interval based on RCLK.

Bit 1 : Timer Event (TIMER) Follows the error counter update interval as determined by the ECUS bit in the Error Counter Configuration Register (ERCNT).

T1: Set on increments of 1 second or 42ms based on RCLK.

E1: Set on increments of 1 second or 62.5ms based on RCLK.

Bit 0 : Receive Multiframe Event (RMF) Set every 2.0ms on receive CAS multiframe boundaries to alert host the signaling data is available. Continues to set on an arbitrary 2.0ms boundary when CAS signaling is not enabled.

Register Name: RIM4

Register Description: Receive Interrupt Mask Register 4

Address (hex): 00A3, 02A3, 04A3, 06A3

Bit#	7	6	5	4	3	2	1	0
Name	-	-	-		RSCOS	1SEC	TIMER	RMF
Default	0	0	0	0	0	0	0	0

Bits 7 to 4 : Unused. Must be set = 0 for proper operation.

Bit 3 : Receive Signaling Change Of State Event (RSCOS)

0 = interrupt masked

1 = interrupt enabled

Bit 2 : One-Second Timer (1SEC)

0 = interrupt masked

1 = interrupt enabled

Bit 1 : Timer Event (TIMER)

0 = interrupt masked

1 = interrupt enabled

Bit 0 : Receive Multiframe Event (RMF)

0 = interrupt masked

1 = interrupt enabled

11.6.6 E1 Error Count Registers

Register Name: ERCNT

Register Description: Error Counter Configuration Register

Address (hex): 0086, 0286, 0486, 0686

Bit#	7	6	5	4	3	2	1	0
Name	1SECS	MCUS	MECU	ECUS	EAMS	_	_	LCVCRF
Default	0	0	0	0	0	0	0	0

- **Bit 7 : One-Second Select (1SECS)** When timed update is enabled by EAMS, setting this bit for a specific framer will allow that framer's counters to latch on the one-second reference from framer #1. Note that this bit should always be clear for framer #1.
 - 0 = Use internally generated one-second timer.
 - 1 = Use 1 second timer from framer #1.
- **Bit 6 : Manual Counter Update Select (MCUS)** When manual update mode is enabled with EAMS, this bit can be used to allow the GLCE bit in GCR1 to latch all counters. Useful for synchronously latching counters of multiple framers.
 - 0 = MECU is used to manually latch counters.
 - 1 = GLCE is used to manually latch counters.
- Bit 5: Manual Error Counter Update (MECU) When enabled by ERCNT.3, the changing of this bit from a 0 to a 1 allows the next clock cycle to load the error counter registers with the latest counts and reset the counters. The user must wait a minimum of 250μs before reading the error count registers to allow for proper update.

Bit 4 : Error Counter Update Select (ECUS)

T1 mode:

- 0 = Update error counters once a second
- 1 = Update error counters every 42ms (336 frames)

E1 mode:

- 0 = Update error counters once a second
- 1 = Update error counters every 62.5ms (500 frames)

Bit 3: Error Accumulation Mode Select (EAMS)

- 0 = ERCNT.4 determines accumulation time (timed update)
- 1 = ERCNT.5 determines accumulation time (manual update)

Bits 2 to 1 : Unused. Must be set = 0 for proper operation.

Bit 0 : E1 Line Code Violation Count Register Function Select (LCVCRF)

- 0 = do not count excessive zeros
- 1 = count excessive zeros

11.6.6.1 E1 Line Code Violation Count Register (LCVCR)

Either bipolar violations or code violations can be counted. Bipolar violations are defined as consecutive marks of the same polarity. In this mode, if the HDB3 mode is set for the receive side, HDB3 codewords are not counted as BPVs. If ERCNT.0 is set, then the LVC counts code violations as defined in ITU 0.161. Code violations are defined as consecutive bipolar violations of the same polarity. In most applications, the framer should be programmed to count BPVs when receiving AMI code and to count CVs when receiving HDB3 code. This counter increments at all times and is not disabled by loss of sync conditions. The counter saturates at 65,535 and will not rollover. The bit error rate on an E1 line would have to be greater than 10** - 2 before the VCR would saturate. See Table 11-17.

Table 11-17 E1 Line Code Violation Counting Options

E1 CODE VIOLATION SELECT (ERCNT.0)	WHAT IS COUNTED IN THE LCVCRs
0	BPVs
1	CVs

Register Name: LCVCR1

Register Description: Line Code Violation Count Register 1

Address (hex): **0050, 0250, 0450, 0650**

Bit #	7	6	5	4	3	2	1	0
Name	LCVC15	LCVC14	LCVC13	LCVC12	LCVC11	LCVC10	LCVC9	LCCV8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Line Code Violation Counter Bits 15 to 8 (LCVC15 to LCVC8). LCV15 is the MSB of the 16-bit code violation count.

Register Name: LCVCR2

Register Description: Line Code Violation Count Register 2

Address (hex): 0051, 0251, 0451, 0651

Bit#	7	6	5	4	3	2	1	0
Name	LCVC7	LCVC6	LCVC5	LCVC4	LCVC3	LCVC2	LCVC1	LCVC0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Line Code Violation Counter Bits 7 to 0 (LCVC7 to LCVC0) LCV0 is the LSB of the 16-bit code violation count.

11.6.6.2 E1 Path Code Violation Count Register (PCVCR)

In E1 operation, the Path Code Violation Count register records CRC4 errors. Since the maximum CRC4 count in a one-second period is 1000, this counter cannot saturate. The counter is disabled during loss of sync at either the FAS or CRC4 level; it will continue to count if loss of multiframe sync occurs at the CAS level.

The Path Code Violation Count Register 1 (PCVCR1) is the most significant word and PCVCR2 is the least significant word of a 16-bit counter that records path violations (PVs).

Register Name: PCVCR1

Register Description: Path Code Violation Count Register 1

Address (hex): **0052**, **0252**, **0452**, **0652**

Bit#	7	6	5	4	3	2	1	0
Name	PCVC15	PCVC14	PCVC13	PCVC12	PCVC11	PCVC10	PCVC9	PCVC8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Path Code Violation Counter Bits 15 to 8 (PCVC15 to PCVC8) PCVC15 is the MSB of the 16-bit path code violation count.

Register Name: PCVCR2

Register Description: Path Code Violation Count Register 2

Address (hex): 0053, 0253, 0453, 0653

Bit#	7	6	5	4	3	2	1	0
Name	PCVC7	PCVC6	PCVC5	PCVC4	PCVC3	PCVC2	PCVC1	PCVC0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Path Code Violation Counter Bits 7 to 0 (PCVC7 to PCVC0) PCVC0 is the LSB of the 16-bit path code violation count.

11.6.6.3 E1 Frames Out-of-Sync Count Register (FOSCR)

In E1 mode, the FOSCR counts word errors in the Frame Alignment Signal in time slot 0. This counter is disabled when RLOF is high. FAS errors will not be counted when the framer is searching for FAS alignment and/or synchronization at either the CAS or CRC4 multiframe level. Since the maximum FAS word error count in a one-second period is 4000, this counter cannot saturate.

The Frames Out of Sync Count Register 1 (FOSCR1) is the most significant word and FOSCR2 is the least significant word of a 16-bit counter that records frames out of sync.

Register Name: FOSCR1

Register Description: Frames Out Of Sync Count Register 1

Address (hex): 0054, 0254, 0454, 0654

Bit#	7	6	5	4	3	2	1	0
Name	FOS15	FOS14	FOS13	FOS12	FOS11	FOS10	FOS9	FOS8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Frames Out of Sync Counter Bits 15 to 8 (FOS15 to FOS8) FOS15 is the MSB of the 16-bit frames out of sync count.

Register Name: FOSCR2

Register Description: Frames Out Of Sync Count Register 2

Address (hex): **0055, 0255, 0455, 0655**

Bit#	7	6	5	4	3	2	1	0
Name	FOS7	FOS6	FOS5	FOS4	FOS3	FOS2	FOS1	FOS0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Frames Out of Sync Counter Bits 7 to 0 (FOS7 to FOS0) FOS0 is the LSB of the 16-bit frames out of sync count.

11.6.6.4 E-Bit Counter (EBCR)

This counter is only available in E1 mode. E-bit Count Register 1 (EBCR1) is the most significant word and EBCR2 is the least significant word of a 16-bit counter that records Far End Block Errors (FEBE) as reported in the first bit of frames 13 and 15 on E1 lines running with CRC4 multiframe. These count registers will increment once each time the received E-bit is set to zero. Since the maximum E-bit count in a one second period is 1000, this counter cannot saturate. The counter is disabled during loss of sync at either the FAS or CRC4 level; it will continue to count if loss of multiframe sync occurs at the CAS level.

Register Name: EBCR1

Register Description: E-Bit Count Register 1
Address (hex): 0056, 0256, 0456, 0656

Bit#	7	6	5	4	3	2	1	0
Name	EB15	EB14	EB13	EB12	EB11	EB10	EB9	EB8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: E-Bit Counter Bits 15 to 8 (EB15 to EB8) EB15 is the MSB of the 16-bit E-Bit count.

Register Name: EBCR2

Register Description: E-Bit Count Register 2
Address (hex): 0057, 0257, 0457, 0657

Bit#	7	6	5	4	3	2	1	0	
Name	EB7	EB6	EB5	EB4	EB3	EB2	EB1	EB0	
Default	0	0	0	0	0	0	0	0	ĺ

Bits 7 to 0: E-Bit Counter Bits 7 to 0 (EB7 to EB0) EB0 is the LSB of the 16-bit E-Bit count.

11.6.7 DS0 Monitoring Function

Register Name: RDS0SEL

Register Description: Receive Channel Monitor Select

Address (hex): **0012, 0212, 0412, 0612**

Bit#	7	6	5	4	3	2	1	0
Name	_			RCM4	RCM3	RCM2	RCM1	RCM0
Default	0	0	0	0	0	0	0	0

Bits 7 to 5: Unused. Must be set = 0 for proper operation.

Bits 4 to 0 : Receive Channel Monitor Bits (RCM4 to RCM0) RCM0 is the LSB of a 5-bit channel select that determines which receive DS0 channel data will appear in the RDS0M register.

Register Name: RDS0M

Register Description: Receive DS0 Monitor Register

Address (hex): 0060, 0260, 0460, 0660

Bit#	7	6	5	4	3	2	1	0
Name	B1	B2	B3	B4	B5	B6	B7	B8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Receive DS0 Channel Bits (B1 to B8) Receive channel data that has been selected by the Receive Channel Monitor Select Register. B8 is the LSB of the DS0 channel (last bit to be received).

11.6.8 E1 Receive Signaling Operation

Register Name: RSIGC

Register Description: Receive Signaling Control Register

Address (hex): 0013, 0213, 0413, 0613

Bit#	7	6	5	4	3	2	1	0
Name		_	_	CASMS		-	-	-
Default	0	0	0	0	0	0	0	0

Bits 7 to 5: Unused. Must be set = 0 for proper operation.

Bit 4 : CAS Mode Select (CASMS)

- 0 = The DS26556 will initiate a resync when two consecutive multiframe alignment signals have been received with an error.
- 1 = The DS26556 will initiate a resync when two consecutive multiframe alignment signals have been received with an error, or 1 multiframe has been received with all the bits in time slot 16 in state 0. Alignment criteria are met when at least one bit in state 1 is present in the time slot

16 preceding the multiframe alignment signal first detected (G.732 alternate criteria).

Bit 3 to 0: Unused. Must be set = 0 for proper operation.

Register Name: RS1 to RS16

Register Description: Receive Signaling Registers

Address (hex): 0040 to 004F, 0240 to 024F, 0440 to 044F, 0640 to 064F

The Receive Signaling Registers are frozen and not updated during a loss of sync condition. They contain the most recent signaling information before the LOF occurred.

(MSB)							(LSB)	
0	0	0	0	Χ	Υ	Х	Х	RS1
CH1-A	CH1-B	CH1-C	CH1-D	CH16-A	CH16-B	CH16-C	CH16-D	RS2
CH2-A	CH2-B	CH2-C	CH2-D	CH17-A	CH17-B	CH17-C	CH17-D	RS3
CH3-A	СН3-В	CH3-C	CH3-D	CH18-A	CH18-B	CH18-C	CH18-D	RS4
CH4-A	CH4-B	CH4-C	CH4-D	CH19-A	CH19-B	CH19-C	CH19-D	RS5
CH5-A	CH5-B	CH5-C	CH5-D	CH20-A	CH20-B	CH20-C	CH20-D	RS6
CH6-A	CH6-B	CH6-C	CH6-D	CH21-A	CH21-B	CH21-C	CH21-D	RS7
CH7-A	CH7-B	CH7-C	CH7-D	CH22-A	CH22-B	CH22-C	CH22-D	RS8
CH8-A	CH8-B	CH8-C	CH8-D	CH23-A	CH23-B	CH23-C	CH23-D	RS9
CH9-A	CH9-B	CH9-C	CH9-D	CH24-A	CH24-B	CH24-C	CH24-D	RS10
CH10-A	CH10-B	CH10-C	CH10-D	CH25-A	CH25-B	CH25-C	CH25-D	RS11
CH11-A	CH11-B	CH11-C	CH11-D	CH26-A	CH26-B	CH26-C	CH26-D	RS12
CH12-A	CH12-B	CH12-C	CH12-D	CH27-A	CH27-B	CH27-C	CH27-D	RS13
CH13-A	CH13-B	CH13-C	CH13-D	CH28-A	CH28-B	CH28-C	CH28-D	RS14
CH14-A	CH14-B	CH14-C	CH14-D	CH29-A	CH29-B	CH29-C	CH29-D	RS15
CH15-A	CH15-B	CH15-C	CH15-D	CH30-A	CH30-B	CH30-C	CH30-D	RS16

Register Name: RSS1, RSS2, RSS3, RSS4

Register Description: Receive Signaling Status Registers

Address (hex): 0098 to 009B, 0298 to 029B, 0498 to 049B, 0698 to 069B

When a channel's signaling data changes state, the respective bit in registers RSS1-RSS4 will be set and latched. The RSCOS bit (RLSR4.3) will be set if the channel was also enabled by setting the appropriate bit in RSCSE1-4. The $\overline{\text{INT}}$ signal will go low if enabled by the interrupt mask bit RIM4.3. The bit will remain set until read. Note that in CAS mode, the LSB of RSS1 would typically represent the CAS alignment bits, and the LSB of RSS3 represents reserved bits and the distant multiframe alarm.

(MSB)							(LSB)	
CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1*	RSS1
CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	RSS2
CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17*	RSS3
CH32	CH31	CH30	CH29	CH28	CH27	CH26	CH25	RSS4

Status bits in this register are latched.

Register Name: RSCSE1, RSCSE2, RSCSE3, RSCSE4
Register Description: Receive Signaling Change of State Enable

Address (hex): 00A8 to 00AB, 02A8 to 02AB, 04A8 to 04AB, 06A8 to 06AB

Setting any of the CH1 through CH32 bits in the RSCSE1 through RSCSE4 registers cause RSCOS (RLSR4.3) to be set when that channel's signaling data changes state.

(MSB)							(LSB)	
CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1*	RSCSE1
CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	RSCSE2
CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17*	RSCSE3
CH32	CH31	CH30	CH29	CH28	CH27	CH26	CH25	RSCSE4

Register Name: RSI1, RSI2, RSI3, RSI4

Register Description: Receive Signaling Reinsertion Enable Registers

Address (hex): 00C8 to 00CB, 02C8 to 02CB, 04C8 to 04CB, 06C8 to 06CB

Setting any of the CH1 through CH32 bits in the RSI1 through RSI4 registers cause signaling data to be reinserted for the associated channel.

((MSB)							(LSB)	
	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	RSI1
(CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	RSI2
(CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	RSI3
(CH32	CH31	CH30	CH29	CH28	CH27	CH26	CH25	RSI4

11.6.9 E1 Receive Per-Channel Idle Code Insertion

Channel data can be replaced by an idle code on a per-channel basis in the transmit and receive directions. Thirty-two Receive Idle Definition Registers (RIDR1-RIDR32) are provided to set the 8-bit idle code for each channel. The Receive Channel Idle Code Enable registers (RCICE1-4) are used to enable idle code replacement on a per channel basis.

Register Name: RIDR1 to RIDR32

Register Description: Receive Idle Code Definition Registers 1 to 32

Address (hex): 0020 to 003F, 0220 to 023F, 0420 to 043F, 0620 to 063F

Bit#	7	6	5	4	3	2	1	0
Name	C7	C6	C5	C4	C3	C2	C1	C0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Per-Channel Idle Code Bits (C0 to C7) C0 is the LSB of the Code (this bit is transmitted last). Address 20H is for channel 1, address 3FH is for channel 32.

The Receive Channel Idle Code Enable Registers (RCICE1/2/3/4) are used to determine which of the 32 E1 channels from the E1 line to the backplane should be overwritten with the code placed in the Receive Idle Code Definition Register.

Register Name: RCICE1, RCICE2, RCICE3, RCICE4

Register Description: Receive Channel Idle Code Enable Registers

Address (hex): 00D0 to 00D3, 02D0 to 02D3, 04D0 to 04D3, 06D0 to 06D3

(MSB)							(LSB)	
CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	RCICE1
CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	RCICE2
CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	RCICE3
CH32	CH31	CH30	CH29	CH28	CH27	CH26	CH25	RCICE4

Bits 7 to 0 : Receive Channels 1 to 32 Code Insertion Control Bits (CH1 to CH32)

0 = do not insert data from the Idle Code Array into the receive data stream

1 = insert data from the Idle Code Array into the receive data stream

11.6.10 E1 Receive Channel Mark Registers

The Receive Channel Mark Registers (RCMR1/RCMR2/RCMR3/RCMR4) control the mapping of channels to the cell/packet interface and the RCHMRK pin. The RCHMRK signal is internally used to select which channels will be mapped to the cell/packet interface. Externally, the signal can be used to multiplex TDM data into channels not used by the cell/packet interface. When the appropriate bits are set to 1, the cell/packet function is mapped to that channel and externally the RCHMRK pin is held high during the entire corresponding channel time.

Register Name: RCMR1, RCMR2, RCMR3, RCMR4
Register Description: Receive-Channel Mark Registers

Address (hex): 00C4 to 00C7, 02C4 to 02C7, 04C4 to 04C7, 06C4 to 06C7

(MSB)							(LSB)	
CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	RCMR1
CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	RCMR2
CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	RCMR3
CH32	CH31	CH30	CH29	CH28	CH27	CH26	CH25/Fbit	RCMR4*

Bits 7 to 0 : Receive Channels 32 to 1 Channel Mark Control Bits (CH1 to CH32)

0 = force the RCHMRK pin to remain low during this channel time

1 = force the RCHMRK pin high during this channel time

In T1 mode, the LSB of RCMR4 determines whether or not the RCHMRK signal pulses high during the F-bit time:

RCMR4.0 = 0, do not pulse RCHMRK during the F-bit RCMR4.0 = 1, pulse RCHMRK during the F-bit

In this mode RCMR4.1 to RCMR4.7 should be set to 0.

11.6.11 Fractional E1 Support (Gapped Clock Mode)

Register Name: RGCCS1, RGCCS2, RGCCS3, RGCCS4

Register Description: Receive Gapped Clock Channel Select Registers

Address (hex): 00CC to 00CF, 02CC to 02CF, 04CC to 04CF, 06CC to 06CF

(MSB)							(LSB)]
CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	RGCCS1
CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	RGCCS2
CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	RGCCS3
CH32	CH31	CH30	CH29	CH28	CH27	CH26	CH25	RGCCS4

Bits 7 to 0: Receive Channels 1 to 32 Gapped Clock Channel Select Bits (CH1 to CH32)

0 = no clock is present on RCHMRK during this channel time

1 = force a clock on RCHMRK during this channel time. The clock will be synchronous with RCLK.

Register Name: RGCCR

Register Description: Receive Gapped Clock Control Register

Address (hex): 0085, 0285, 0485, 0685

Bit#	7	6	5	4	3	2	1	0
Name	RCCF	RGCE	-	-	-	-	-	-
Default	0	0	0	0	0	0	0	0

Bit 7 : Receive Channel Clock Format (RCCF) This bit controls the function of the RCHMRK pin went it is in the channel clock mode and the RGCCR.6 bit is set = 1. Channel clock mode is enabled in the RCHMRK Pin Function Select (RPFS) register.

0 = 64kbps, clock output during all 8 bits

1 = 56kbps, clock output during 7 MSBs

Bit 6:/ Receive Gapped Clock Enable (RGCE) This bit controls the function of the RCHMRK pin went it is in the channel clock mode. Channel clock mode is enabled in the RCHMRK Pin Function Select (RPFS) register.

0 = RCHMRK outputs a pulse during the LSB of each channel time.

1 = RCHMRK outputs a gapped bit clock as selected by the RGCCS1 through RGCCC4 registers.

Bits 5 to 0: Unused. Must be set = 0 for proper operation.

11.6.12 Additional Sa-Bit and Si-Bit Receive Operation (E1 Mode)

Register Name: RAF

Register Description: Receive Align Frame Register

Address (hex): **0064**, **0264**, **0464**, **0664**

Bit#	7	6	5	4	3	2	1	0
Name	Si	0	0	1	1	0	1	1
Default	0	0	0	0	0	0	0	0

Bit 7 : International Bit (Si)

Bit 6 : Frame Alignment Signal Bit (0)

Bit 5 : Frame Alignment Signal Bit (0)

Bit 4 : Frame Alignment Signal Bit (1)

Bit 3 : Frame Alignment Signal Bit (1)

Bit 2 : Frame Alignment Signal Bit (0)

Bit 1 : Frame Alignment Signal Bit (1)

Bit 0 : Frame Alignment Signal Bit (1)

Register Name: RNAF

Register Description: Receive Non-Align Frame Register

Address (hex): **0065**, **0256**, **0456**, **0665**

Bit#	7	6	5	4	3	2	1	0
Name	Si	1	Α	Sa4	Sa5	Sa6	Sa7	Sa8
Default	0	0	0	0	0	0	0	0

Bit 7: International Bit (Si)

Bit 6 : Frame Non-Alignment Signal Bit (1)

Bit 5: Remote Alarm (A)

Bit 4: Additional Bit 4 (Sa4)

Bit 3 : Additional Bit 5 (Sa5)

Bit 2 : Additional Bit 6 (Sa6)

Bit 1: Additional Bit 7 (Sa7)

Bit 0 : Additional Bit 8 (Sa8)

Register Name: RsiAF

Register Description: Received Si Bits of the Align Frame

Address (hex): 0066, 0266, 0466, 0666

Bit#	7	6	5	4	3	2	1	0
Name	SiF14	SiF12	SiF10	SiF8	SiF6	SiF4	SiF2	SiF0
Default	0	0	0	0	0	0	0	0

Bit 0 : Si Bit of Frame 0 (SiF0)

Bit 1 : Si Bit of Frame 2 (SiF2)

Bit 2 : Si Bit of Frame 4 (SiF4)

Bit 3 : Si Bit of Frame 6 (SiF6)

Bit 4 : Si Bit of Frame 8 (SiF8)

Bit 5 : Si Bit of Frame 10 (SiF10)

Bit 6 : Si Bit of Frame 12 (SiF12)

Bit 7: Si Bit of Frame 14 (SiF14)

Register Name: RSiNAF

Register Description: Received Si Bits of the Non-Align Frame

Address (hex): **0067**, **0267**, **0467**, **0667**

Bit#	7	6	5	4	3	2	1	0
Name	SiF15	SiF13	SiF11	SiF9	SiF7	SiF5	SiF3	SiF1
Default	0	0	0	0	0	0	0	0

Bit 7: Si Bit of Frame 15 (SiF15)

Bit 6: Si Bit of Frame 13 (SiF13)

Bit 5: Si Bit of Frame 11 (SiF11)

Bit 4: Si Bit of Frame 9 (SiF9)

Bit 3 : Si Bit of Frame 7 (SiF7)

Bit 2: Si Bit of Frame 5 (SiF5)

Bit 1 : Si Bit of Frame 3 (SiF3)

Bit 0 : Si Bit of Frame 1 (SiF1)

Register Name: RRA

Register Description: Received Remote Alarm Address (hex): Received Remote Alarm 0068, 0268, 0468, 0668

Bit #	7	6	5	4	3	2	1	0
Name	RRAF15	RRAF13	RRAF11	RRAF9	RRAF7	RRAF5	RRAF3	RRAF1
Default	0	0	0	0	0	0	0	0

Bit 7 : Remote Alarm Bit of Frame 15 (RRAF15)

Bit 6 : Remote Alarm Bit of Frame 13 (RRAF13)

Bit 5 : Remote Alarm Bit of Frame 11 (RRAF11)

Bit 4: Remote Alarm Bit of Frame 9 (RRAF9)

Bit 3: Remote Alarm Bit of Frame 7 (RRAF7)

Bit 2 : Remote Alarm Bit of Frame 5 (RRAF5)

Bit 1 : Remote Alarm Bit of Frame 3 (RRAF3)

Bit 0 : Remote Alarm Bit of Frame 1 (RRAF1)

Register Name: RSa4

Register Description: Received Sa4 Bits
Address (hex): 0069, 0269, 0469, 0669

Bit# 7 6 5 3 2 1 0 Name RSa4F15 RSa4F13 RSa4F11 RSa4F9 RSa4F7 RSa4F5 RSa4F3 RSa4F1 Default 0 0 0 0 0 0

Bit 7 : Sa4 Bit of Frame 15 (RSa4F15)

Bit 6: Sa4 Bit of Frame 13 (RSa4F13)

Bit 5: Sa4 Bit of Frame 11 (RSa4F11)

Bit 4: Sa4 Bit of Frame 9 (RSa4F9)

Bit 3: Sa4 Bit of Frame 7 (RSa4F7)

Bit 2 : Sa4 Bit of Frame 5 (RSa4F5)

Bit 1: Sa4 Bit of Frame 3 (RSa4F3)

Bit 0 : Sa4 Bit of Frame 1 (RSa4F1)

Register Name: RSa5

Register Description: Received Sa5 Bits
Address (hex): 006A, 026A, 046A, 066A

Bit # 6 0 7 5 3 2 1 RSa5F15 RSa5F13 RSa5F11 RSa5F9 RSa5F7 RSa5F5 RSa5F3 Name RSa5F1 Default 0 0 0 0 0 0 0

Bit 7 : Sa5 Bit of Frame 15 (RSa5F15)

Bit 6 : Sa5 Bit of Frame 13 (RSa5F13)

Bit 5 : Sa5 Bit of Frame 11 (RSa5F11)

Bit 4 : Sa5 Bit of Frame 9 (RSa5F9)

Bit 3: Sa5 Bit of Frame 7 (RSa5F7)

Bit 2: Sa5 Bit of Frame 5 (RSa5F5)

Bit 1: Sa5 Bit of Frame 3 (RSa5F3)

Bit 0 : Sa5 Bit of Frame 1 (RSa5F1

Register Name: RSa6

Register Description: Received Sa6 Bits
Address (hex): 006B, 026B, 046B, 066B

Bit# 6 5 3 2 0 Name RSa6F15 RSa6F13 RSa6F11 RSa6F9 RSa6F7 RSa6F5 RSa6F3 RSa6F1 Default 0 0 0 0 0 0

Bit 7 : Sa6 Bit of Frame 15 (RSa6F15)

Bit 6: Sa6 Bit of Frame 13 (RSa6F13)

Bit 5 : Sa6 Bit of Frame 11 (RSa6F11)

Bit 4: Sa6 Bit of Frame 9 (RSa6F9)

Bit 3: Sa6 Bit of Frame 7 (RSa6F7)

Bit 2 : Sa6 Bit of Frame 5 (RSa6F5)

Bit 1 : Sa6 Bit of Frame 3 (RSa6F3)

Bit 0 : Sa6 Bit of Frame 1 (RSa6F1)

Register Name: RSa7

Register Description: Received Sa7 Bits
Address (hex): 006C, 026C, 046C, 066C

 Bit #
 7
 6
 5
 4
 3
 2
 1
 0

 Name
 RSa7F15
 RSa7F13
 RSa7F11
 RSa7F9
 RSa7F7
 RSa7F5
 RSa7F3
 RSa7F1

 Default
 0
 0
 0
 0
 0
 0
 0

Bit 7: Sa7 Bit of Frame 15 (RSa4F15)

Bit 6 : Sa7 Bit of Frame 13 (RSa7F13)

Bit 5 : Sa7 Bit of Frame 11 (RSa7F11)

Bit 4: Sa7 Bit of Frame 9 (RSa7F9)

Bit 3: Sa7 Bit of Frame 7 (RSa7F7)

Bit 2: Sa7 Bit of Frame 5 (RSa7F5)

Bit 1 : Sa7 Bit of Frame 3 (RSa7F3)

Bit 0 : Sa7 Bit of Frame 1 (RSa7F1)

Register Name: RSa8

Register Description: Received Sa8 Bits
Address (hex): 006D, 026D, 046D, 066D

Bit# 7 6 5 3 2 0 RSa8F15 RSa8F13 RSa8F11 RSa8F9 RSa8F7 RSa8F5 RSa8F1 Name RSa8F3 Default 0 0 0 0 0 0

Bit 0 : Sa8 Bit of Frame 1 (RSa8F1)

Bit 1: Sa8 Bit of Frame 3 (RSa8F3)

Bit 2 : Sa8 Bit of Frame 5 (RSa8F5)

Bit 3: Sa8 Bit of Frame 7 (RSa8F7)

Bit 4 : Sa8 Bit of Frame 9 (RSa8F9)

Bit 5: Sa8 Bit of Frame 11 (RSa8F11)

Bit 6: Sa8 Bit of Frame 13 (RSa8F13)

Bit 7 : Sa8 Bit of Frame 15 (RSa8F15)

11.6.13 Receive Framer HDLC Controller

Each transmit and receive framer has an HDLC controller with 64-byte FIFOs. These HDLC controllers are not the same as the controllers in the packet interface block. The HDLC controllers automatically generate and detect flags, generate and check the CRC checksum, generate and detect abort sequences, stuff and destuff zeros, and byte align to the data stream.

Register Name: RHC

Register Description: Receive HDLC Control Register

Address (hex): 0010, 0210, 0410, 0610

Bit#	7	6	5	4	3	2	1	0
Name	RCRCD	RHR	RHMS	RHCS4	RHCS3	RHCS2	RHCS1	RHCS0
Default	0	0	0	0	0	0	0	0

Bit 0 to Bit 4 : Receive HDLC Channel Select (RHCSx) These bits determine which DS0 is mapped to the HDLC controller when enabled with RHMS = 0. RHCS0 to RHCS4 = all 0s selects channel 1, RHCS0 to RHCS4 = all 1s selects channel 32 (E1).

Bit 5 : Receive HDLC Mapping Select (RHMS)

0 = Receive HDLC assigned to channels

1 = Receive HDLC assigned to FDL (T1 mode), Sa Bits (E1 mode)

Bit 6 : Receive HDLC Reset (RHR) Will reset the receive HDLC controller and flush the receive FIFO. Must be cleared and set again for a subsequent reset.

0 = Normal operation

1 = Reset receive HDLC controller and flush the receive FIFO

Bit 7: Receive CRC16 Display (RCRCD)

0 = Do not write received CRC16 code to FIFO

1= Write received CRC16 code to FIFO after last octet of packet

Register Name: RHBSE

Register Description: Receive HDLC Bit Suppress Register

Address (hex): **0011, 0211, 0411, 0611**

Bit#	7	6	5	4	3	2	1	0
Name	BSE8	BSE7	BSE6	BSE5	BSE4	BSE3	BSE2	BSE1
Default	0	0	0	0	0	0	0	0

Bit 0 : Receive Channel Bit 1 Suppress:Sa8 Bit Suppress (BSE1) LSB of the channel. Set to one to stop this bit from being used.

Bit 1: Receive Channel Bit 2 Suppress/Sa7 Bit Suppress (BSE2) Set to one to stop this bit from being used

Bit 2: Receive Channel Bit 3 Suppress/Sa6 Bit Suppress (BSE3) Set to one to stop this bit from being used

Bit 3: Receive Channel Bit 4 Suppress/Sa5 Bit Suppress (BSE4) Set to one to stop this bit from being used

Bit 4: Receive Channel Bit 5 Suppress/Sa4 Bit Suppress (BSE5) Set to one to stop this bit from being used

Bit 5: Receive Channel Bit 6 Suppress (BSE6) Set to one to stop this bit from being used.

Bit 6: Receive Channel Bit 7 Suppress (BSE7) Set to one to stop this bit from being used.

Bit 7: Receive Channel Bit 8 Suppress (BSE8) MSB of the channel. Set to one to stop this bit from being used.

11.6.13.1 HDLC FIFO Control

Control of the receive FIFO is accomplished via the Receive HDLC FIFO Control Register (RHFC). The FIFO Control register sets the watermarks for the receive FIFO.

When the receive FIFO fills above the high watermark, the RHWM bit (RRTS5.1) will be set. RHWM is a real-time bit and will remain set as long as the receive FIFO's write pointer is above the watermark. If enabled, this condition can also cause an interrupt via the $\overline{\text{INT}}$ pin.

Register Name: RHFC

Register Description: Receive HDLC FIFO Control Register

Address (hex): 0087, 0287, 0487, 0687

Bit#	7	6	5	4	3	2	1	0
Name			_		_	_	RFHWM1	RFHWM0
Default	0	0	0	0	0	0	0	0

Bits 7 to 2: Unused. Must be set = 0 for proper operation.

Bits 1 & 0 : Receive FIFO High Watermark Select (RFHWM1 to RFHWM0)

RFHWM1	RFHWM0	Receive FIFO Watermark (bytes)				
0	0	4				
0	1	16				
1	0	32				
1	1	48				

11.6.13.2 Receive Packet Bytes Available

The lower 6 bits of the Receive Packet Bytes Available register indicates the number of bytes (0 through 64) that can be read from the receive FIFO. The value indicated by this register informs the host as to how many bytes can be read from the receive FIFO without going past the end of a message. This value will refer to one of four possibilities, the first part of a packet, the continuation of a packet, the last part of a packet, or a complete packet. After reading the number of bytes indicated by this register the host then checks the HDLC Status register for detailed message status.

If the value in the RHPBA register refers to the beginning portion of a message or continuation of a message then the MSB of the RHPBA register will return a value of 1. This indicates that the host may safely read the number of bytes returned by the lower 6 bits of the RHPBA register but there is no need to check the information register since the packet has not yet terminated (successfully or otherwise).

Register Name: RHPBA

Register Description: Receive HDLC Packet Bytes Available Register

Address (hex): 00B5, 02B5, 04B5, 06B5

Bit#	7	6	5	4	3	2	1	0
Name	MS	RPBA6	RPBA5	RPBA4	RPBA3	RPBA2	RPBA1	RPBA0
Default	0	0	0	0	0	0	0	0

Bit 7: Message Status (MS)

0 = Bytes indicated by RPBA0 through RPBA6 are the end of a message. Host must check the HDLC Status register for details.

1 = Bytes indicated by RPBA0 through RPBA6 are the beginning or continuation of a message. The host does not need to check the HDLC Status.

Bits 6 to 0 : Receive FIFO Packet Bytes Available Count (RPBA6 to RPBA0) RPBA0 is the LSB.

Register Name: RHF

Register Description: Receive HDLC FIFO Register O0B6, 02B6, 04B6, 06B6

Bit#	7	6	5	4	3	2	1	0
Name	RHD7	RHD6	RHD5	RHD4	RHD3	RHD2	RHD1	RHD0
Default	0	0	0	0	0	0	0	0

Bit 7: Receive HDLC Data Bit 7 (RHD7) MSB of a HDLC packet data byte.

Bit 6 : Receive HDLC Data Bit 6 (RHD6)

Bit 5: Receive HDLC Data Bit 5 (RHD5)

Bit 4 : Receive HDLC Data Bit 4 (RHD4)

Bit 3 : Receive HDLC Data Bit 3 (RHD3)

Bit 2 : Receive HDLC Data Bit 2 (RHD2)

Bit 1 : Receive HDLC Data Bit 1 (RHD1)

Bit 0: Receive HDLC Data Bit 0 (RHD0) LSB of a HDLC packet data byte.

11.6.13.3 HDLC Status and Information

RRTS5 and RLS5 provide status information for the receive HDLC controller. When a particular event has occurred (or is occurring), the appropriate bit in one of these registers will be set to a one. With the latched bits, when an event occurs and a bit is set to a one, it will remain set until the user reads that bit. The bit will be cleared when it is read and it will not be set again until the event has occurred again. The real-time bits report the current instantaneous conditions that are occurring and the history of these bits is not latched.

Like the other latched status registers, the user will follow a read of the status bit with a write. The byte written to the register will inform the device which of the latched bits the user wishes to clear (the real time bits are not affected by writing to the status register). The user will write a byte to one of these registers, with a one in the bit positions he or she wishes to clear and a zero in the bit positions he or she does not wish to clear.

The HDLC status register RLS5 has the ability to initiate a hardware interrupt via the $\overline{\text{INT}}$ output signal. Each of the events in this register can be either masked or unmasked from the interrupt pin via the receive HDLC Interrupt Mask Register (RIM5). Interrupts will force the $\overline{\text{INT}}$ signal low when the event occurs. The $\overline{\text{INT}}$ pin will be allowed to return high (if no other interrupts are present) when the user reads the event bit that caused the interrupt to occur.

Register Name: RRTS5

Register Description: Receive Real-Time Status 5 (HDLC)

Address (hex): 00B4, 02B4, 04B4, 06B4

Bit#	7	6	5	4	3	2	1	0
Name	_	PS2	PS1	PS0		_	RHWM	RNE
Default	0	0	0	0	0	0	0	0

All bits in this register are real-time.

Bit 7: Unused.

Bits 6 to 4: Receive Packet Status (PS2 to PS0) These are real-time bits indicating the status as of the last read of the receive FIFO.

PS2	PS1	PS0	PACKET STATUS
0	0	0	In Progress: End of message has not yet been reached.
0	0	1	Packet OK: Packet ended with correct CRC codeword.
0	1	0	CRC Error: A closing flag was detected, preceded by a corrupt CRC codeword.
0	1	1	Abort: Packet ended because an abort signal was detected (7 or more ones in a row).
1	0	0	Overrun: HDLC controller terminated reception of packet because receive FIFO is full.

Bits 3 & 2: Unused.

Bit 1: Receive FIFO Above High Watermark Condition (RHWM) Set when the receive 64-byte FIFO fills beyond the high watermark as defined by the Receive HDLC FIFO Control Register (RHFC). This is a real-time bit.

Bit 0 : Receive FIFO Not Empty Condition (RNE) Set when the receive 64-byte FIFO has at least one byte available for a read. This is a real-time bit.

Register Name: RLS5

Register Description: Receive Latched Status Register 5 (HDLC)

Address (hex): 0094, 0294, 0494, 0694

Bit#	7	6	5	4	3	2	1	0
Name	_	_	ROVR	RHOBT	RPE	RPS	RHWMS	RNES
Default	0	0	0	0	0	0	0	0

Bits 7& 6: Unused.

Bit 5: Receive FIFO Overrun (ROVR) Set when the receive HDLC controller has terminated packet reception because the FIFO buffer is full.

Bit 4 : Receive HDLC Opening Byte Event (RHOBT) Set when the next byte available in the receive FIFO is the first byte of a message.

Bit 3 : Receive Packet End Event (RPE) Set when the HDLC controller detects either the finish of a valid message (i.e., CRC check complete) or when the controller has experienced a message fault such as a CRC checking error, or an overrun condition, or an abort has been seen. This is a latched bit and will be cleared when read.

Bit 2: Receive Packet Start Event (RPS) Set when the HDLC controller detects an opening byte. This is a latched bit and will be cleared when read.

Bit 1 : Receive FIFO Above High Watermark Set Event (RHWMS) Set when the receive 64-byte FIFO crosses the high watermark as defined by the Receive HDLC FIFO Control Register (RHFC). Rising edge detect of RHWM.

Bit 0 : Receive FIFO Not Empty Set Event (RNES) Set when the receive FIFO has transitioned from 'empty' to 'not-empty' (at least one byte has been put into the FIFO). Rising edge detect of RNE.

Register Name: RIM5

Register Description: Receive Interrupt Mask 5 (HDLC)

Address (hex): 00A4, 02A4, 04A4, 06A4

Bit#	7	6	5	4	3	2	1	0
Name	_	_	ROVR	RHOBT	RPE	RPS	RHWMS	RNES
Default	0	0	0	0	0	0	0	0

Bits 7& 6: Unused. Must be set = 0 for proper operation.

Bit 5 : Receive FIFO Overrun (ROVR)

0 = interrupt masked

1 = interrupt enabled

Bit 4: Receive HDLC Opening Byte Event (RHOBT)

0 = interrupt masked

1 = interrupt enabled

Bit 3: Receive Packet End Event (RPE)

0 = interrupt masked

1 = interrupt enabled

Bit 2 : Receive Packet Start Event (RPS)

0 = interrupt masked

1 = interrupt enabled

Bit 1 : Receive FIFO Above High Watermark Set Event (RHWMS)

0 = interrupt masked

1 = interrupt enabled

Bit 0 : Receive FIFO Not Empty Set Event (RNES)

0 = interrupt masked

1 = interrupt enabled

11.6.14 Interfacing the E1 Rx Framer to the BERT

Register Name: RBICR

Register Description: Receive BERT Interface Control Register

Address (hex): 008A, 028A, 048A, 068A

Bit#	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	RBDC	_	RBEN
Default	0	0	0	0	0	0	0	0

Bits 7 to 3 : Unused. Must be set = 0 for proper operation.

Bit 2 : Receive BERT Direction Control (RBDC)

0 = Receive Path: The BERT receives data from the network side via RPOS and RNEG.

1 = Backplane: The BERT receives data from the system backplane via the TSER pin.

Bit 1 : Unused. Must be set = 0 for proper operation.

Bit 0 : Receive BERT Enable (RBEN)

0 = Receive BERT is disabled.

1 = Receive BERT is enabled.

Register Name: RBCS1, RBCS2, RBCS3, RBCS4

Register Description: Receive BERT Channel Select Registers

Address (hex): 00D4 to 00D7, 02D4 to 02D7, 04D4 to 04D7, 06D4 to 06D7

Setting any of the CH1 through CH32 bits in the RBCS1 through RBCS4 registers will map data from those channels to the on-board BERT. RBEN must be set to one for these registers to have effect. Multiple, or all channels may be selected simultaneously. These registers work with the receive-side framer only.

(MSB)							(LSB)	
CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	RBCS1
CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	RBCS2
CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	RBCS3
CH32	CH31	CH30	CH29	CH28	CH27	CH26	CH25	RBCS4

Register Name: RBBS

Register Description: Receive BERT Bit Suppress Register

Address (hex): 008B, 028B, 048B, 068B

Bit #	7	6	5	4	3	2	1	0
Name	BSE8	BSE7	BSE6	BSE5	BSE4	BSE3	BSE2	BSE1
Default	0	0	0	0	0	0	0	0

Bit 7: Receive Channel Bit 8 Suppress (BSE8) MSB of the channel. Set to one to stop this bit from being used.

Bit 6: Receive Channel Bit 7 Suppress (BSE7) Set to one to stop this bit from being used.

Bit 5: Receive Channel Bit 6 Suppress (BSE6) Set to one to stop this bit from being used.

Bit 4: Receive Channel Bit 5 Suppress (BSE5) Set to one to stop this bit from being used.

Bit 3: Receive Channel Bit 4 Suppress (BSE4) Set to one to stop this bit from being used.

Bit 2: Receive Channel Bit 3 Suppress (BSE3) Set to one to stop this bit from being used.

Bit 1: Receive Channel Bit 2 Suppress (BSE2) Set to one to stop this bit from being used.

Bit 0: Receive Channel Bit 1 Suppress (BSE1) LSB of the channel. Set to one to stop this bit from being used.

11.7 E1 Transmit framer

Table 11-18 E1 Transmit Framer Register Map

ADDRESS (hex)		
PORT 1 + 0h PORT 2 + 200h	NAME	FUNCTION
PORT 3 + 400h		
PORT 4 + 600h		
0100-010F	_	Unused. Must be set = 0 for proper operation.
0110	THC1	Tx HDLC Control 1
0111	THBSE	Tx HDLC Bit Suppress
0112		Unused. Must be set = 0 for proper operation.
0113	THC2	Tx HDLC Control 2
0114	TSACR	Tx Sa Bit Control Register
0115		Unused. Must be set = 0 for proper operation.
0116	_	Unused. Must be set = 0 for proper operation.
0117	_	Unused. Must be set = 0 for proper operation.
0118	SSIE1	Tx Software Signaling Insertion Enable 1
0119	SSIE2	Tx Software Signaling Insertion Enable 2
011A	SSIE3	Tx Software Signaling Insertion Enable 3
011B	SSIE4	Tx Software Signaling Insertion Enable 4
011C - 011F	ı	Unused. Must be set = 0 for proper operation.
0120	TIDR1	Tx Idle Definition 1
0121	TIDR2	Tx Idle Definition 2
0122	TIDR3	Tx Idle Definition 3
0123	TIDR4	Tx Idle Definition 4
0124	TIDR5	Tx Idle Definition 5
0125	TIDR6	Tx Idle Definition 6
0126	TIDR7	Tx Idle Definition 7
0127	TIDR8	Tx Idle Definition 8
0128	TIDR9	Tx Idle Definition 9
0129	TIDR10	Tx Idle Definition 10
012A	TIDR11	Tx Idle Definition 11
012B	TIDR12	Tx Idle Definition 12
012C	TIDR13	Tx Idle Definition 13
012D	TIDR14	Tx Idle Definition 14
012E	TIDR15	Tx Idle Definition 15
012F	TIDR16	Tx Idle Definition 16
0130	TIDR17	Tx Idle Definition 17
0131	TIDR18	Tx Idle Definition 18
0132	TIDR19	Tx Idle Definition 19
0133	TIDR20	Tx Idle Definition 20
0134	TIDR21	Tx Idle Definition 21
0135	TIDR22	Tx Idle Definition 22
0136	TIDR23	Tx Idle Definition 23
0137	TIDR24	Tx Idle Definition 24
0138	TIDR25	Tx Idle Definition 25
0139	TIDR26	Tx Idle Definition 26
013A	TIDR27	Tx Idle Definition 27
013B	TIDR28	Tx Idle Definition 28
013C 013D	TIDR29	Tx Idle Definition 29
013D 013E	TIDR30	Tx Idle Definition 30 Tx Idle Definition 31
013E 013F	TIDR31 TIDR32	Tx Idle Definition 31 Tx Idle Definition 32
0140	TS1	Tx Tale Definition 32 Tx Signaling 1
U 140	101	I A Signaling 1

PORT 1 + 0h	ADDRESS (hex)		
PORT 2 + 200h			
PORT 3 + 400h PORT 4 + 600h		NAME	FUNCTION
PORT 4 + 600h	-		I should be
0142 TS3 Tx Signaling 3 0143 TS4 Tx Signaling 4 0144 TS5 Tx Signaling 5 0145 TS6 Tx Signaling 6 0146 TS7 Tx Signaling 7 0147 TS8 Tx Signaling 8 0148 TS9 Tx Signaling 9 0149 TS10 Tx Signaling 10 014A TS11 Tx Signaling 11 014B TS12 Tx Signaling 12 014C TS13 Tx Signaling 13 014D TS14 Tx Signaling 14 014E TS15 Tx Signaling 15 014F TS16 Tx Signaling 16 0150 TCICE1 Tx Channel Idle Code Enable 1 0151 TCICE2 Tx Channel Idle Code Enable 2 0152 TCICE3 Tx Channel Idle Code Enable 3 0153 TCICE4 Tx Channel Idle Code Enable 4 0154-0163 — Unused. Must be set = 0 for proper operation. 0164 TAF Tx Align Frame 0165 T			
0142 TS3 Tx Signaling 3 0143 TS4 Tx Signaling 4 0144 TS5 Tx Signaling 5 0145 TS6 Tx Signaling 6 0146 TS7 Tx Signaling 7 0147 TS8 Tx Signaling 8 0148 TS9 Tx Signaling 9 0149 TS10 Tx Signaling 10 014A TS11 Tx Signaling 11 014B TS12 Tx Signaling 12 014C TS13 Tx Signaling 13 014D TS14 Tx Signaling 14 014E TS15 Tx Signaling 15 014F TS16 Tx Signaling 16 0150 TCICE1 Tx Channel Idle Code Enable 1 0151 TCICE2 Tx Channel Idle Code Enable 2 0152 TCICE3 Tx Channel Idle Code Enable 3 0153 TCICE4 Tx Channel Idle Code Enable 4 0154-0163 — Unused. Must be set = 0 for proper operation. 0164 TAF Tx Align Frame 0165 T		TS2	Tx Signaling 2
0143 TS4 Tx Signaling 4 0144 TS5 Tx Signaling 5 0145 TS6 Tx Signaling 6 0146 TS7 Tx Signaling 7 0147 TS8 Tx Signaling 8 0148 TS9 Tx Signaling 9 0149 TS10 Tx Signaling 10 014A TS11 Tx Signaling 11 014B TS12 Tx Signaling 12 014C TS13 Tx Signaling 13 014D TS14 Tx Signaling 14 014E TS15 Tx Signaling 15 014F TS16 Tx Signaling 16 0150 TCICE1 Tx Channel Idle Code Enable 1 0151 TCICE2 Tx Channel Idle Code Enable 2 0152 TCICE3 Tx Channel Idle Code Enable 3 0153 TCICE4 Tx Channel Idle Code Enable 4 0154-0163 — Unused. Must be set = 0 for proper operation. 0164 TAF Tx Align Frame 0165 TNAF Tx Si bits for Non-Align Frame 0166 </td <td></td> <td></td> <td></td>			
0144 TS5 Tx Signaling 5 0145 TS6 Tx Signaling 6 0146 TS7 Tx Signaling 7 0147 TS8 Tx Signaling 8 0148 TS9 Tx Signaling 9 0149 TS10 Tx Signaling 10 014A TS11 Tx Signaling 11 014B TS12 Tx Signaling 12 014C TS13 Tx Signaling 13 014D TS14 Tx Signaling 14 014E TS15 Tx Signaling 15 014F TS16 Tx Signaling 16 0150 TCICE1 Tx Channel Idle Code Enable 1 0151 TCICE2 Tx Channel Idle Code Enable 2 0152 TCICE3 Tx Channel Idle Code Enable 3 0153 TCICE4 Tx Channel Idle Code Enable 4 0154-0163 — Unused. Must be set = 0 for proper operation. 0164 TAF Tx Align Frame 0165 TNAF Tx Non-Align Frame 0166 TSiAF Tx Si bits for Non-Align Frame			
0146 TS7 Tx Signaling 7 0147 TS8 Tx Signaling 8 0148 TS9 Tx Signaling 9 0149 TS10 Tx Signaling 10 014A TS11 Tx Signaling 11 014B TS12 Tx Signaling 12 014C TS13 Tx Signaling 13 014D TS14 Tx Signaling 14 014E TS15 Tx Signaling 15 014F TS16 Tx Signaling 16 0150 TCICE1 Tx Channel Idle Code Enable 1 0151 TCICE2 Tx Channel Idle Code Enable 2 0152 TCICE3 Tx Channel Idle Code Enable 3 0153 TCICE4 Tx Channel Idle Code Enable 4 0154-0163 — Unused. Must be set = 0 for proper operation. 0164 TAF Tx Align Frame 0165 TNAF Tx Si bits for Align Frame 0166 TSiAF Tx Si bits for Non-Align Frame 0167 TSiNAF Tx Si bits for Non-Align Frame 0168 TRA Tx Remote Alarm	0144	TS5	
0147 TS8 Tx Signaling 8 0148 TS9 Tx Signaling 9 0149 TS10 Tx Signaling 10 014A TS11 Tx Signaling 11 014B TS12 Tx Signaling 12 014C TS13 Tx Signaling 13 014D TS14 Tx Signaling 14 014E TS15 Tx Signaling 15 014F TS16 Tx Signaling 16 0150 TCICE1 Tx Channel Idle Code Enable 1 0151 TCICE2 Tx Channel Idle Code Enable 2 0152 TCICE3 Tx Channel Idle Code Enable 3 0153 TCICE4 Tx Channel Idle Code Enable 4 0154-0163 — Unused. Must be set = 0 for proper operation. 0164 TAF Tx Align Frame 0165 TNAF Tx Non-Align Frame 0166 TSiAF Tx Si bits for Non-Align Frame 0167 TSiNAF Tx Si bits for Non-Align Frame 0168 TRA Tx Remote Alarm 0169 TSa4 Tx Sa5 Bits <td>0145</td> <td>TS6</td> <td>Tx Signaling 6</td>	0145	TS6	Tx Signaling 6
0148 TS9 Tx Signaling 9 0149 TS10 Tx Signaling 10 014A TS11 Tx Signaling 11 014B TS12 Tx Signaling 12 014C TS13 Tx Signaling 13 014D TS14 Tx Signaling 14 014E TS15 Tx Signaling 15 014F TS16 Tx Signaling 16 0150 TCICE1 Tx Channel Idle Code Enable 1 0151 TCICE2 Tx Channel Idle Code Enable 2 0152 TCICE3 Tx Channel Idle Code Enable 3 0153 TCICE4 Tx Channel Idle Code Enable 4 0154-0163 — Unused. Must be set = 0 for proper operation. 0164 TAF Tx Align Frame 0165 TNAF Tx Non-Align Frame 0166 TSiAF Tx Si bits for Non-Align Frame 0167 TSiNAF Tx Si bits for Non-Align Frame 0168 TRA Tx Remote Alarm 0169 TSa4 Tx Sa5 Bits	0146	TS7	Tx Signaling 7
0149 TS10 Tx Signaling 10 014A TS11 Tx Signaling 11 014B TS12 Tx Signaling 12 014C TS13 Tx Signaling 13 014D TS14 Tx Signaling 14 014E TS15 Tx Signaling 15 014F TS16 Tx Signaling 16 0150 TCICE1 Tx Channel Idle Code Enable 1 0151 TCICE2 Tx Channel Idle Code Enable 2 0152 TCICE3 Tx Channel Idle Code Enable 3 0153 TCICE4 Tx Channel Idle Code Enable 4 0154-0163 — Unused. Must be set = 0 for proper operation. 0164 TAF Tx Align Frame 0165 TNAF Tx Non-Align Frame 0166 TSiAF Tx Si bits for Non-Align Frame 0167 TSiNAF Tx Si bits for Non-Align Frame 0168 TRA Tx Remote Alarm 0169 TSa4 Tx Sa5 Bits	0147	TS8	Tx Signaling 8
014A TS11 Tx Signaling 11 014B TS12 Tx Signaling 12 014C TS13 Tx Signaling 13 014D TS14 Tx Signaling 14 014E TS15 Tx Signaling 15 014F TS16 Tx Signaling 16 0150 TCICE1 Tx Channel Idle Code Enable 1 0151 TCICE2 Tx Channel Idle Code Enable 2 0152 TCICE3 Tx Channel Idle Code Enable 3 0153 TCICE4 Tx Channel Idle Code Enable 4 0154-0163 — Unused. Must be set = 0 for proper operation. 0164 TAF Tx Align Frame 0165 TNAF Tx Non-Align Frame 0166 TSiAF Tx Si bits for Align Frame 0167 TSiNAF Tx Si bits for Non-Align Frame 0168 TRA Tx Remote Alarm 0169 TSa4 Tx Sa5 Bits	0148	TS9	Tx Signaling 9
014B TS12 Tx Signaling 12 014C TS13 Tx Signaling 13 014D TS14 Tx Signaling 14 014E TS15 Tx Signaling 15 014F TS16 Tx Signaling 16 0150 TCICE1 Tx Channel Idle Code Enable 1 0151 TCICE2 Tx Channel Idle Code Enable 2 0152 TCICE3 Tx Channel Idle Code Enable 3 0153 TCICE4 Tx Channel Idle Code Enable 4 0154-0163 — Unused. Must be set = 0 for proper operation. 0164 TAF Tx Align Frame 0165 TNAF Tx Non-Align Frame 0166 TSiAF Tx Si bits for Align Frame 0167 TSiNAF Tx Si bits for Non-Align Frame 0168 TRA Tx Remote Alarm 0169 TSa4 Tx Sa5 Bits	0149	TS10	
014C TS13 Tx Signaling 13 014D TS14 Tx Signaling 14 014E TS15 Tx Signaling 15 014F TS16 Tx Signaling 16 0150 TCICE1 Tx Channel Idle Code Enable 1 0151 TCICE2 Tx Channel Idle Code Enable 2 0152 TCICE3 Tx Channel Idle Code Enable 3 0153 TCICE4 Tx Channel Idle Code Enable 4 0154-0163 — Unused. Must be set = 0 for proper operation. 0164 TAF Tx Align Frame 0165 TNAF Tx Non-Align Frame 0166 TSiAF Tx Si bits for Align Frame 0167 TSiNAF Tx Si bits for Non-Align Frame 0168 TRA Tx Remote Alarm 0169 TSa4 Tx Sa5 Bits	014A	TS11	Tx Signaling 11
014D TS14 Tx Signaling 14 014E TS15 Tx Signaling 15 014F TS16 Tx Signaling 16 0150 TCICE1 Tx Channel Idle Code Enable 1 0151 TCICE2 Tx Channel Idle Code Enable 2 0152 TCICE3 Tx Channel Idle Code Enable 3 0153 TCICE4 Tx Channel Idle Code Enable 4 0154-0163 — Unused. Must be set = 0 for proper operation. 0164 TAF Tx Align Frame 0165 TNAF Tx Non-Align Frame 0166 TSiAF Tx Si bits for Align Frame 0167 TSiNAF Tx Si bits for Non-Align Frame 0168 TRA Tx Remote Alarm 0169 TSa4 Tx Sa4 Bits 016A TSa5 Tx Sa5 Bits	014B	TS12	
014E TS15 Tx Signaling 15 014F TS16 Tx Signaling 16 0150 TCICE1 Tx Channel Idle Code Enable 1 0151 TCICE2 Tx Channel Idle Code Enable 2 0152 TCICE3 Tx Channel Idle Code Enable 3 0153 TCICE4 Tx Channel Idle Code Enable 4 0154-0163 — Unused. Must be set = 0 for proper operation. 0164 TAF Tx Align Frame 0165 TNAF Tx Non-Align Frame 0166 TSiAF Tx Si bits for Align Frame 0167 TSiNAF Tx Si bits for Non-Align Frame 0168 TRA Tx Remote Alarm 0169 TSa4 Tx Sa5 Bits	014C	TS13	
014F TS16 Tx Signaling 16 0150 TCICE1 Tx Channel Idle Code Enable 1 0151 TCICE2 Tx Channel Idle Code Enable 2 0152 TCICE3 Tx Channel Idle Code Enable 3 0153 TCICE4 Tx Channel Idle Code Enable 4 0154-0163 — Unused. Must be set = 0 for proper operation. 0164 TAF Tx Align Frame 0165 TNAF Tx Non-Align Frame 0166 TSiAF Tx Si bits for Align Frame 0167 TSiNAF Tx Si bits for Non-Align Frame 0168 TRA Tx Remote Alarm 0169 TSa4 Tx Sa4 Bits 016A TSa5 Tx Sa5 Bits	014D	TS14	
0150 TCICE1 Tx Channel Idle Code Enable 1 0151 TCICE2 Tx Channel Idle Code Enable 2 0152 TCICE3 Tx Channel Idle Code Enable 3 0153 TCICE4 Tx Channel Idle Code Enable 4 0154-0163 — Unused. Must be set = 0 for proper operation. 0164 TAF Tx Align Frame 0165 TNAF Tx Non-Align Frame 0166 TSIAF Tx Si bits for Align Frame 0167 TSINAF Tx Si bits for Non-Align Frame 0168 TRA Tx Remote Alarm 0169 TSa4 Tx Sa4 Bits 016A TSa5 Tx Sa5 Bits			
0151 TCICE2 Tx Channel Idle Code Enable 2 0152 TCICE3 Tx Channel Idle Code Enable 3 0153 TCICE4 Tx Channel Idle Code Enable 4 0154-0163 — Unused. Must be set = 0 for proper operation. 0164 TAF Tx Align Frame 0165 TNAF Tx Non-Align Frame 0166 TSiAF Tx Si bits for Align Frame 0167 TSiNAF Tx Si bits for Non-Align Frame 0168 TRA Tx Remote Alarm 0169 TSa4 Tx Sa4 Bits 016A TSa5 Tx Sa5 Bits			
0152 TCICE3 Tx Channel Idle Code Enable 3 0153 TCICE4 Tx Channel Idle Code Enable 4 0154-0163 — Unused. Must be set = 0 for proper operation. 0164 TAF Tx Align Frame 0165 TNAF Tx Non-Align Frame 0166 TSiAF Tx Si bits for Align Frame 0167 TSiNAF Tx Si bits for Non-Align Frame 0168 TRA Tx Remote Alarm 0169 TSa4 Tx Sa4 Bits 016A TSa5 Tx Sa5 Bits			
0153 TCICE4 Tx Channel Idle Code Enable 4 0154-0163 — Unused. Must be set = 0 for proper operation. 0164 TAF Tx Align Frame 0165 TNAF Tx Non-Align Frame 0166 TSiAF Tx Si bits for Align Frame 0167 TSiNAF Tx Si bits for Non-Align Frame 0168 TRA Tx Remote Alarm 0169 TSa4 Tx Sa4 Bits 016A TSa5 Tx Sa5 Bits			
0154-0163 — Unused. Must be set = 0 for proper operation. 0164 TAF Tx Align Frame 0165 TNAF Tx Non-Align Frame 0166 TSiAF Tx Si bits for Align Frame 0167 TSiNAF Tx Si bits for Non-Align Frame 0168 TRA Tx Remote Alarm 0169 TSa4 Tx Sa4 Bits 016A TSa5 Tx Sa5 Bits			
0164 TAF Tx Align Frame 0165 TNAF Tx Non-Align Frame 0166 TSiAF Tx Si bits for Align Frame 0167 TSiNAF Tx Si bits for Non-Align Frame 0168 TRA Tx Remote Alarm 0169 TSa4 Tx Sa4 Bits 016A TSa5 Tx Sa5 Bits		TCICE4	
0165 TNAF Tx Non-Align Frame 0166 TSiAF Tx Si bits for Align Frame 0167 TSiNAF Tx Si bits for Non-Align Frame 0168 TRA Tx Remote Alarm 0169 TSa4 Tx Sa4 Bits 016A TSa5 Tx Sa5 Bits			
0166 TSiAF Tx Si bits for Align Frame 0167 TSiNAF Tx Si bits for Non-Align Frame 0168 TRA Tx Remote Alarm 0169 TSa4 Tx Sa4 Bits 016A TSa5 Tx Sa5 Bits			
0167 TSiNAF Tx Si bits for Non-Align Frame 0168 TRA Tx Remote Alarm 0169 TSa4 Tx Sa4 Bits 016A TSa5 Tx Sa5 Bits			<u> </u>
0168 TRA Tx Remote Alarm 0169 TSa4 Tx Sa4 Bits 016A TSa5 Tx Sa5 Bits			· ·
0169 TSa4 Tx Sa4 Bits 016A TSa5 Tx Sa5 Bits			
016A TSa5 Tx Sa5 Bits			
1 040D 1 TO 0 1 TO 0 D'I			
016B TSa6 Tx Sa6 Bits			
016C TSa7 Tx Sa7 Bits			
016D TSa8 Tx Sa8 Bits 016E-017F — Unused. Must be set = 0 for proper operation.		1588	
0181 TCR1 Tx Control 1 0182 TCR2 Tx Control 2			
0183 TCR3 Tx Control 3			
0184 TIOCR Tx I/O Configuration			
0185 TGCR Tx Gapped Clock Control			
0186 — Unused. Must be set = 0 for proper operation.		-	
0187 THFC Tx HDLC FIFO Control		THEC	
0188 - Unused. Must be set = 0 for proper operation.		-	
0189 TDS0SEL Tx DS0 Monitor Select		TDS0SFI	
018A TBICR Tx BERT Interface Control			
018B TBBS Tx BERT Bit Suppress En			
018C — Unused. Must be set = 0 for proper operation.			
018D — Unused. Must be set = 0 for proper operation.			
018E TSYNCC Tx Synchronizer Control		TSYNCC	
018F - Unused. Must be set = 0 for proper operation.		-	
0190 TLS1 Tx Latched Status 1		TLS1	
0191 TLS2 Tx Latched Status 2 (HDLC)			
0192 TLS3 Tx Latched Status 3 (SYNC)			
0193-019E — Unused. Must be set = 0 for proper operation.			
019F TIIR Tx Interrupt Information Register		TIIR	

ADDRESS (hex) PORT 1 + 0h PORT 2 + 200h PORT 3 + 400h PORT 4 + 600h	NAME	FUNCTION
01A0	TIM1	Tx Interrupt Mask Register 1
01A1	TIM2	Tx Interrupt Mask Register 2 (HDLC)
01A2	TIM3	Tx Interrupt Mask Register 3 (SYNC)
01A3-01B0	_	Unused. Must be set = 0 for proper operation.
01B1	TRTS2	Tx Real-Time Status Register 2 (HDLC)
01B2		Unused. Must be set = 0 for proper operation.
01B3	TFBA	Tx HDLC FIFO Buffer Available
01B4	THF	Tx HDLC FIFO
01B5-01BA		Unused. Must be set = 0 for proper operation.
01BB	TDS0M	Tx DS0 Monitor
01BC-01C3		Unused. Must be set = 0 for proper operation.
01C4	TCMR1	Tx Channel Mark 1
01C5	TCMR2	Tx Channel Mark 2
01C6	TCMR3	Tx Channel Mark 3
01C7	TCMR4	Tx Channel Mark 4
01C8	THSCS1	Tx Hardware Signaling Channel Select 1
01C9	THSCS2	Tx Hardware Signaling Channel Select 2
01CA	THSCS3	Tx Hardware Signaling Channel Select 3
01CB	THSCS4	Tx Hardware Signaling Channel Select 4
01CC	TGCCS1	Tx Gapped Clock Channel Select 1
01CD	TGCCS2	Tx Gapped Clock Channel Select 2
01CE	TGCCS3	Tx Gapped Clock Channel Select 3
01CF	TGCCS4	Tx Gapped Clock Channel Select 4
01D0	PCL1	Per-Channel Loopback Enable 1
01D1	PCL2	Per-Channel Loopback Enable 2
01D2	PCL3	Per-Channel Loopback Enable 3
01D3	PCL4	Per-Channel Loopback Enable 4
01D4	TBCS1	Tx BERT Channel Select 1
01D5	TBCS2	Tx BERT Channel Select 2
01D6	TBCS3	Tx BERT Channel Select 3
01D7	TBCS4	Tx BERT Channel Select 4
01D8 – 01FF	_	Unused. Must be set = 0 for proper operation.

11.7.1 Transmit Master Mode Register

The Transmit Master Mode Register (TMMR) controls the initialization of the transmit side formatter. The FRM_EN bit may be left 'low' if the formatter for that particular port is not going to be used, putting the circuit in a low-power (sleep) state.

Register Name: TMMR

Register Description: Transmit Master Mode Register

Address (hex): 0180, 0380, 0580, 0780

Bit #	7	6	5	4	3	2	1	0
Name	FRM_EN	INIT_DONE	_	_	_	_	SFTRST	T1/E1
Default	0	0	0	0	0	0	0	0

Bit 7: Framer Enable (FRM_EN) This bit must be written with the desired value prior to setting INIT_DONE.

0 = Framer disabled – held in low power state

1 = Framer enabled – all features active

Bit 6 : Initialization Done (INIT_DONE) The host (user) must set this bit once he/she has written the configuration registers. The host is required to write or clear all RAM based registers (addresses 100H to 17FH) prior to setting this bit. Once INIT_DONE is set, the internal processor will check the FRM_EN bit. If enabled, the internal processor continues executing based on the initial configuration.

Bits 5 to 2 : Unused. Must be set = 0 for proper operation.

Bit 1 : Soft Reset (SFTRST) Level sensitive processor reset. Should be taken high then low to reset and initialize the internal processor.

0 = Normal Operation

1 = Hold the internal RISC in reset. This bit only affects the transmit side processor.

Bit 0 : Transmitter T1/E1 Mode Select (T1/E1) Sets operating mode for transmitter only! This bit must be written with the desired value prior to setting INIT DONE.

0 = T1 operation

1 = E1 operation

11.7.2 Interrupt Information Registers

The Interrupt Information Registers provide an indication of which DS26556 Status Registers are generating an interrupt. When an interrupt occurs, the host can read TIIR to quickly identify which of the transmit status registers are causing the interrupt(s). These are real-time registers in that the bits will clear once the appropriate interrupt has been serviced and cleared.

Register Name: TIIR

Register Description: Transmit Interrupt Information Register

Address (hex): 019F, 039F, 059F, 079F

Bit#	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	TLS3	TLS2	TLS1
Default	0	0	0	0	0	0	0	0

11.7.3 E1 Transmit Control Registers

Register Name: TCR1

Register Description: Transmit Control Register 1

Address (hex): 0181, 0381, 0581, 0781

Bit#	7	6	5	4	3	2	1	0
Name	TFPT	T16S	TG802	TSiS	TSA1	THDB3	TAIS	TCRC4
Default	0	0	0	0	0	0	0	0

Bit 7: Transmit Time Slot 0 Pass Through (TFPT)

0 = FAS bits/Sa bits/Remote Alarm sourced internally from the TAF and TNAF registers

1 = FAS bits/Sa bits/Remote Alarm sourced from TSER

Bit 6 : Transmit Time Slot 16 Data Select (T16S)

0 = time slot 16 determined by the SSIEx and THSCS registers

1 = source time slot 16 from TS1 to TS16 registers

Bit 5: Transmit G.802 Enable (TG802)

0 = do not force TCHMRK high during bit 1 of time slot 26

1 = force TCHMRK high during bit 1 of time slot 26

Bit 4 : Transmit International Bit Select (TSiS)

0 = sample Si bits at TSER pin

1 = source Si bits from TAF and TNAF registers (in this mode, TCR1.7 must be set to 0)

Bit 3: Transmit Signaling All Ones (TSA1)

0 = normal operation

1 = force time slot 16 in every frame to all ones

Bit 2: Transmit HDB3 Enable (THDB3)

0 = HDB3 disabled

1 = HDB3 enabled

Bit 1: Transmit AIS (TAIS)

0 = transmit data normally

1 = transmit an unframed all-ones code

Bit 0: Transmit CRC4 Enable (TCRC4)

0 = CRC4 disabled

1 = CRC4 enabled

Register Name: TCR2

Register Description: Transmit Control Register 2

Address (hex): 0182, 0382, 0582, 0782

Bit #	7	6	5	4	3	2	1	0
Name	AEBE	AAIS	ARA	_	_	_	_	_
Default	0	0	0	0	0	0	0	0

Bit 7 : Automatic E-Bit Enable (AEBE)

0 = E-bits not automatically set in the transmit direction

1 = E-bits automatically set in the transmit direction

Bit 6 : Automatic AIS Generation (AAIS)

0 = disabled

1 = enabled

Bit 5: Automatic Remote Alarm Generation (ARA)

0 = disabled

1 = enabled

Bits 4 to 0 : Unused. Must be set = 0 for proper operation.

Register Name: TCR3

Register Description: Transmit Control Register 3

Address (hex): 0183, 0383, 0583, 0783

Bit#	7	6	5	4	3	2	1	0
Name	-	-	TCSS1	TCSS0	-	-	IBPV	CRC4R
Default	0	0	0	0	0	0	0	0

Bits 7 & 6: Unused, must be set = 0 for proper operation

Bit 5 & 4: Transmit Clock Source Select bit 1 and 0 (TCSS1, TCSS0)

TCSS1	TCSS0	Transmit Clock Source
0	0	The TCLK pin is always the source of Transmit Clock.
0	1	Switch to the clock present at RCLK when the signal at the TCLK pin fails to transition after 1 channel time.
1	0	For Future Use
1	1	Use the signal present at RCLK as the Transmit Clock. The TCLK pin is ignored.

Bits 3 & 2: Unused, must be set = 0 for proper operation

Bit 1 : Insert BPV (IBPV) A 0-to-1 transition on this bit will cause a single BiPolar Violation (BPV) to be inserted into the transmit data stream. Once this bit has been toggled from a 0 to a 1, the device waits for the next occurrence of three consecutive ones to insert the BPV. This bit must be cleared and set again for a subsequent error to be inserted.

Bit 0 : CRC-4 Recalculate (CRC4R)

0 = transmit CRC-4 generation and insertion operates in normal mode

1 = transmit CRC-4 generation operates according to G.706 Intermediate Path Recalculation method.

Register Name: TIOCR

Register Description: Transmit I/O Configuration Register

Address (hex): 0184, 0384, 0584, 0784

Bit# 3 0 6 5 4 TCLKINV TSYNCINV **HSSYNCINV HSCLKM** Name **HSSM** TSIO TSM Default 0 0 0 0 0 0 0

Bit 7: TCLK Invert (TCLKINV)

0 = No inversion

1 = Invert

Bit 6: TSYNC Invert (TSYNCINV)

0= No inversion

1 = Invert

Bit 5: HSSYNC Invert (HSSYNCINV)

0 = No inversion

1 = Invert

Bit 4: HSYSCLK Mode Select (HSCLKM)

0 = if HSYSCLK is 1.544MHz

1 = if HSYSCLK is 2.048/4.096/8.192/16.384MHz

Note: This bit must be set the same as the RIOCR.HSCLKM bit

Bit 3: HSSYNC Mode Select (HSSM) Selects frame or multiframe mode for the HSSYNC pin.

0 = frame mode

1 = multiframe mode

Bit 2 : TSYNC I/O Select (TSIO)

0 = TSYNC is an input

1 = TSYNC is an output

Bit 1: Unused, must be set = 0 for proper operation.

Bit 0 : TSYNC Mode Select (TSM) Selects frame or multiframe mode for the TSYNC pin when TSYNC is an output.

0 = frame mode

1 = multiframe mode

11.7.4 E1 Transmit Status and Information

When a particular event has occurred (or is occurring), the appropriate bit in one of these registers will be set to a one. Status bits may operate in either a latched or real-time fashion. Some latched bits may be enabled to generate a hardware interrupt via the $\overline{\text{INT}}$ signal.

Real-Time Bits

Some status bits operate in a real-time fashion. These bits are read-only and indicate the present state of an alarm or a condition. Real-time bits will remain stable, and valid during the host read operation. The current value of the internal status signals can be read at any time from the real-time status registers without changing any the latched status register bits

Latched Bits

When an event or an alarm occurs and a latched bit is set to a one, it will remain set until cleared by the user. These bits typically respond on a change-of-state for an alarm, condition, or event; and operate in a read-then-write fashion. The user should read the value of the desired status bit, and then write a 1 to that particular bit location in order to clear the latched value (write a '0' to locations not to be cleared). Once the bit is cleared, it will not be set again until the event has occurred again.

Mask Bits

Some of the alarms and events can be either masked or unmasked from the interrupt pin via the Interrupt Mask Registers (TIMx). When unmasked, the $\overline{\text{INT}}$ signal will be forced low when the enabled event or condition occurs. The $\overline{\text{INT}}$ pin will be allowed to return high (if no other unmasked interrupts are present) when the user reads then clears (with a write) the alarm bit that caused the interrupt to occur. Note that the latched status bit and the $\overline{\text{INT}}$ pin will clear even if the alarm is still present.

Register Name: TLS1

Register Description: Transmit Latched Status Register 1

Address (hex): 0190, 0390, 0590, 0790

Bit#	7	6	5	4	3	2	1	0
Name	-	-	-	_	TAF	TMF	LOTCC	LOTC
Default	0	0	0	0	0	0	0	0

All bits in this register are latched and can cause interrupts.

Bits 7 to 4: Unused

Bit 3 : Transmit Align Frame Event (TAF) Set every $250\mu s$ at the beginning of align frames. Used to alert the host that the TAF and TNAF registers need to be updated.

Bit 2 : Transmit Multiframe Event (TMF) Set every 2ms (regardless if CRC4 is enabled) on transmit multiframe boundaries. Used to alert the host that signaling data needs to be updated.

Bit 1 : Loss of Transmit Clock Condition Clear (LOTCC) Set when the LOTC condition has cleared (a clock has been sensed at the TCLK pin).

Bit 0 : Loss of Transmit Clock Condition (LOTC) Set when the TCLK pin has not transitioned for approximately 3 clock periods. Will force the LOTC pin high if enabled. The host can clear this bit even if the condition is still present. The LOTC pin will remain high while the condition exists, even if the host has cleared the status bit. If enabled by TIM1.0, the $\overline{\text{INT}}$ pin transitions low when this bit is set, and transitions high when this bit is cleared (if no other unmasked interrupt conditions exist).

Register Name: TIM1

Register Description: Transmit Interrupt Mask Register 1

Address (hex): 01A0, 03A0, 05A0, 07A0

Bit#	7	6	5	4	3	2	1	0
Name	-	-	-	-	TAF	TMF	LOTCC	LOTC
Default	0	0	0	0	0	0	0	0

Bits 7 to 4: Unused. Must be set = 0 for proper operation.

Bit 3: Transmit Align Frame Event (TAF)

0 = interrupt masked 1 = interrupt enabled

Bit 2 : Transmit Multiframe Event (TMF)

0 = interrupt masked1 = interrupt enabled

Bit 1: Loss of Transmit Clock Clear Condition (LOTCC)

0 = interrupt masked1 = interrupt enabled

Bit 0 : Loss of Transmit Clock Condition (LOTC)

0 = interrupt masked1 = interrupt enabled

11.7.5 Per-Channel Loopback

The Per-Channel Loopback Registers (PCLRs) determine which channels (if any) from the backplane should be replaced with the data from the receive side or in other words, off of the T1 or E1 line. If this loopback is enabled, then transmit and receive clocks and frame syncs must be synchronized. One method to accomplish this would be to tie RCLK to TCLK and RFSYNC to TSYNC. There are no restrictions on which channels can be looped back or on how many channels can be looped back.

Each of the bit position in the Per-Channel Loopback Registers (PCLR1/PCLR2/PCLR3/PCLR4) represent a time slot in the outgoing frame. When these bits are set to a one, data from the corresponding receive channel will replace the data on TSER for that channel.

Register Name: PCL1, PCL2, PCL3, PCL4

Register Description: Per-Channel Loopback Enable Registers

Address (hex): 01D0 to 01D3, 03D0 to 03D3, 05D0 to 05D3, 07D0h to 07D3

Bit #	7	6	5	4	3	2	1	0	1
Name	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	PC
Name	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	PC
Name	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	PC
Name	CH32	CH31	CH30	CH29	CH28	CH27	CH26	CH25	PC
Default	0	0	0	0	0	0	0	0	

PCL1 PCL2 PCL3 PCL4

Bits 7 to 0 / Per-Channel Loopback Enable for Channels 32 to 1 (CH32 to CH1)

0 = Loopback disabled

1 = Enable Loopback. Source data from the corresponding receive channel

11.7.6 E1 Transmit DS0 Monitoring Function

Register Name: TDS0SEL

Register Description: Transmit DS0 Channel Monitor Select

Address (hex): 0189, 0389, 0589, 0789

Bit#	7	6	5	4	3	2	1	0
Name	_	_	_	TCM4	TCM3	TCM2	TCM1	TCM0
Default	0	0	0	0	0	0	0	0

Bits 7 to 5 : Unused. Must be set = 0 for proper operation.

Bits 4 to 0: Transmit Channel Monitor Bits (TCM4 to TCM0) TCM0 is the LSB of a 5 bit channel select that determines which transmit channel data will appear in the TDS0M register.

Register Name: TDS0M

Register Description: Transmit DS0 Monitor Register

Address (hex): 01BB, 03BB, 05BB, 07BB

Bit#	7	6	5	4	3	2	1	0
Name	B1	B2	B3	B4	B5	B6	B7	B8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Transmit DS0 Channel Bits (B1 to B8) Transmit channel data that has been selected by the Transmit Channel Monitor Select Register. B8 is the LSB of the DS0 channel (last bit to be transmitted).

11.7.7 E1 Transmit Signaling Operation

Register Name: TS1 TO TS16

Register Description: Transmit Signaling Registers (E1 MODE)

Address (hex): 0140 to 014F, 0340 to 034F, 0540 to 054F, 0740 to 074F

Table 11-19 E1 Transmit Signaling - CAS Format

Bit #	7	6	5	4	3	2	1	0	
Name	0	0	0	0	Χ	Υ	Χ	Χ	TS1
Name	CH1-A	CH1-B	CH1-C	CH1-D	CH16-A	CH16-B	CH16-C	CH16-D	TS2
Name	CH2-A	CH2-B	CH2-C	CH2-D	CH17-A	CH17-B	CH17-C	CH17-D	TS3
Name	CH3-A	CH3-B	CH3-C	CH3-D	CH18-A	CH18-B	CH18-C	CH18-D	TS4
Name	CH4-A	CH4-B	CH4-C	CH4-D	CH19-A	CH19-B	CH19-C	CH19-D	TS5
Name	CH5-A	CH5-B	CH5-C	CH5-D	CH20-A	CH20-B	CH20-C	CH20-D	TS6
Name	CH6-A	CH6-B	CH6-C	CH6-D	CH21-A	CH21-B	CH21-C	CH21-D	TS7
Name	CH7-A	CH7-B	CH7-C	CH7-D	CH22-A	CH22-B	CH22-C	CH22-D	TS8
Name	CH8-A	CH8-B	CH8-C	CH8-D	CH23-A	CH23-B	CH23-C	CH23-D	TS9
Name	CH9-A	CH9-B	CH9-C	CH9-D	CH24-A	CH24-B	CH24-C	CH24-D	TS10
Name	CH10-A	CH10-B	CH10-C	CH10-D	CH25-A	CH25-B	CH25-C	CH25-D	TS11
Name	CH11-A	CH11-B	CH11-C	CH11-D	CH26-A	CH26-B	CH26-C	CH26-D	TS12
Name	CH12-A	CH12-B	CH12-C	CH12-D	CH27-A	CH27-B	CH27-C	CH27-D	TS13
Name	CH13-A	CH13-B	CH13-C	CH13-D	CH28-A	CH28-B	CH28-C	CH28-D	TS14
Name	CH14-A	CH14-B	CH14-C	CH14-D	CH29-A	CH29-B	CH29-C	CH29-D	TS15
Name	CH15-A	CH15-B	CH15-C	CH15-D	CH30-A	CH30-B	CH30-C	CH30-D	TS16
Default	0	0	0	0	0	0	0	0	

Table 11-20 E1 Transmit Signaling - CCS Format

Bit #	7	6	5	4	3	2	1	0	
Name	1	2	3	4	5	6	7	8	TS1
Name	9	10	11	12	13	14	15	16	TS2
Name	17	18	19	20	21	22	23	24	TS3
Name	25	26	27	28	29	30	31	32	TS4
Name	33	34	35	36	37	38	39	40	TS5
Name	41	42	43	44	45	46	47	48	TS6
Name	49	50	51	52	53	54	55	56	TS7
Name	57	58	59	60	61	62	63	64	TS8
Name	65	66	67	68	69	70	71	72	TS9
Name	73	74	75	76	77	78	79	80	TS10
Name	81	82	83	84	85	86	87	88	TS11
Name	89	90	91	92	93	94	95	96	TS12
Name	97	98	99	100	101	102	103	104	TS13
Name	105	106	107	108	109	110	111	112	TS14
Name	113	114	115	116	117	118	119	120	TS15
Name	121	122	123	124	125	126	127	128	TS16
Default	0	0	0	0	0	0	0	0	

Register Name: SSIE1

Register Description: Software Signaling Insertion Enable Register 1

Address (hex): 0118, 0318, 0518, 0718

Bit#	7	6	5	4	3	2	1	0
Name	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Software Signaling Insertion Enable for Channels 8 to 8 (CH8 to CH1) These bits determine which channels are to have signaling inserted form the Transmit Signaling registers.

0 = do not source signaling data from the TS registers for this channel

1 = source signaling data from the TS registers for this channel

Register Name: SSIE2

Register Description: Software Signaling Insertion Enable Register 2

Address (hex): 0119, 0319, 0519, 0719

Bit#	7	6	5	4	3	2	1	0
Name	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Software Signaling Insertion Enable for Channels 16 to 9 (CH16 TO CH9) These bits determine which channels are to have signaling inserted form the Transmit Signaling registers.

0 = do not source signaling data from the TS registers for this channel

1 = source signaling data from the TS registers for this channel

Register Name: SSIE3

Register Description: Software Signaling Insertion Enable Register 3

Address (hex): 011A, 031A, 051A, 071A

Bit#	7	6	5	4	3	2	1	0
Name	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Software Signaling Insertion Enable for Channels 24 to 17 (CH24 TO CH17) These bits determine which channels are to have signaling inserted form the Transmit Signaling registers.

0 = do not source signaling data from the TS registers for this channel

1 = source signaling data from the TS registers for this channel

Register Name: SSIE4

Register Description: Software Signaling Insertion Enable Register 4

Address (hex): 011B, 031B, 051B, 071B

Bit#	7	6	5	4	3	2	1	0
Name	CH32	CH31	CH30	CH29	CH28	CH27	CH26	CH25
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Software Signaling Insertion Enable for Channels 32 to 25 (CH32 TO CH25) These bits determine which channels are to have signaling inserted form the Transmit Signaling registers.

0 = do not source signaling data from the TS registers for this channel

1 = source signaling data from the TS registers for this channel

Register Name: THSCS1

Register Description: Transmit Hardware Signaling Channel Select Register 1

Address (hex): 01C8, 03C8, 05C8, 07C8,

Bit#	7	6	5	4	3	2	1	0
Name	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 / Transmit Hardware Signaling Channel Select for Channels 8 to 1 (CH8 to CH1). This function is used only on ports configured for high-speed multiplexed TDM bus operation. These bits determine which channels will have signaling data inserted from the HTSIG pin into the demultiplexed data stream from the HTDATA pin.

0 = do not source signaling data from the HTSIG pin for this channel

1 = source signaling data from the HTSIG pin for this channel

Register Name: THSCS2

Register Description: Transmit Hardware Signaling Channel Select Register 2

Address (hex): 01C9, 03C9, 05C9, 07C9

Bit#	7	6	5	4	3	2	1	0
Name	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 / Transmit Hardware Signaling Channel Select for Channels 16 to 9 (CH16 to CH9). This function is used only on ports configured for high-speed multiplexed TDM bus operation. These bits determine which channels will have signaling data inserted from the HTSIG pin into the demultiplexed data stream from the HTDATA pin.

0 = do not source signaling data from the HTSIG pin for this channel

1 = source signaling data from the HTSIG pin for this channel

Register Name: THSCS3

Register Description: Transmit Hardware Signaling Channel Select Register 3

Address (hex): 01CA, 03CA, 05CA, 07CA

Bit#	7	6	5	4	3	2	1	0
Name	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 / Transmit Hardware Signaling Channel Select for Channels 24 to 17 (CH24 to CH17 This function is used only on ports configured for high-speed multiplexed TDM bus operation. These bits determine which channels will have signaling data inserted from the HTSIG pin into the demultiplexed data stream from the HTDATA pin.

0 = do not source signaling data from the HTSIG pin for this channel

1 = source signaling data from the HTSIG pin for this channel

Register Name: THSCS4

Register Description: Transmit Hardware Signaling Channel Select Register 4

Address (hex): 01CB, 03CB, 05CB, 07CB

Bit#	7	6	5	4	3	2	1	0
Name	CH32	CH31	CH30	CH29	CH28	CH27	CH26	CH25
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 / Transmit Hardware Signaling Channel Select for Channels 32 to 25 (CH32 to CH25). This function is used only on ports configured for high-speed multiplexed TDM bus operation. These bits determine which channels will have signaling data inserted from the HTSIG pin into the demultiplexed data stream from the HTDATA pin.

0 = do not source signaling data from the HTSIG pin for this channel

1 = source signaling data from the HTSIG pin for this channel

11.7.8 E1 Transmit Per-Channel Idle Code Insertion

Channel data can be replaced by an idle code on a per-channel basis in the transmit and receive directions. Thirty-two Transmit Idle Definition Registers (TIDR1-TIDR32) are provided to set the 8-bit idle code for each channel. The Transmit Channel Idle Code Enable registers (TCICE1-4) are used to enable idle code replacement on a per channel basis.

Register Name: TIDR1 to TIDR32

Register Description: Transmit Idle Code Definition Registers 1 to 32

Address (hex): 0120 to 013F, 0320 to 013F, 0520 to 053F, 0720 to 073F

Bit#	7	6	5	4	3	2	1	0
Name	C7	C6	C5	C4	C3	C2	C1	C0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Per-Channel Idle Code Bits (C7 to C0) C0 is the LSB of the Code (this bit is transmitted last).

Register Name: TCICE1, TCICE2, TCICE3, TCICE4

Register Description: Transmit Channel Idle Code Enable Registers

Address (hex): 0150 to 0153, 0350 to 0353, 0550 to 0553, 0750 to 0753

The Transmit Channel Idle Code Enable Registers (TCICE1/2/3/4) are used to determine which of the 32 E1 channels should be overwritten with the code placed in the Transmit Idle Code Definition Register.

Bit #	7	6	5	4	3	2	1	0	
Name	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	TCICE1
Name	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	TCICE2
Name	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	TCICE3
Name	CH32	CH31	CH30	CH29	CH28	CH27	CH26	CH25	TCICE4
Default	0	0	0	0	0	0	0	0	

Bits 7 to 0: Transmit Channels 32 to 1 Code Insertion Control Bits (CH32 to CH1)

0 = do not insert data from the Idle Code Array into the transmit data stream

1 = insert data from the Idle Code Array into the transmit data stream

11.7.9 E1 Transmit Channel Mark Registers

The Receive Channel Mark Registers (RCMR1/RCMR2/RCMR3/RCMR4) and the Transmit Channel Mark Registers (TCMR1/TCMR2/TCMR3/TCMR4) control the mapping of channels to the cell/packet interface and the RCHMRK and TCHMRK pins. The RCHMRK and TCHMRK signals are internally used to select which channels will be mapped to the cell/packet interface. Externally, the signal can be used to multiplex TDM data into channels not used by the cell/packet interface. When the appropriate bits are set to 1, the cell/packet function is mapped to that channel and externally the RCHMRK and TCHMRK pin is held high during the entire corresponding channel time. When used in T1 mode, only RCMR1 to RCMR3 and the LSB of RCMR4 are used.

Register Name: TCMR1, TCMR2, TCMR3, TCMR4
Register Description: Transmit Channel Mark Registers

Address (hex): 01C4 to 01C7, 03C4 to 03C7, 05C4 to 05C7, 07C4 to 07C7

Bit #	7	6	5	4	3	2	1	0	
Name	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	TCMR1
Name	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	TCMR2
Name	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	TCMR3
Name	CH32	CH31	CH30	CH29	CH28	CH27	CH26	CH25	TCMR4
Default	0	0	0	0	0	0	0	0	

Bits 7 to 0: Transmit Channels 32 to 1 Channel Mark Control Bits (CH32 to CH1)

0 = force the TCHMRK pin to remain low during this channel time

1 = force the TCHMRK pin high during this channel time

Register Name: TGCCR

Register Description: Transmit Gapped Clock Control Register

Address (hex): 0185, 0385, 0585, 0785

Bit #	7	6	5	4	3	2	1	0
Name	TDATFMT	TGCLKEN	-	-	-	-	-	-
Default	0	0	0	0	0	0	0	0

Bit 7 : Transmit Channel Data Format (TDATFMT)

0 = 64kbps (data contained in all 8 bits)

1 = 56kbps (data contained in 7 out of the 8 bits)

Bit 6 : Transmit Gapped Clock Enable (TGPCKEN)) If the TCHMRK pin is in the channel clock mode then this bit determines if TCHMRK outputs a pulse during the LSB of all channels or a gapped clock during selected channels.

0 = pulse during LSB of all

1 = gapped clock during selected channels

Bits 5 to 0 : Unused. Must be set = 0 for proper operation.

11.7.10 Fractional E1 Support (Gapped Clock Mode)

TGCCS1 TGCCS2 TGCCS3 TGCCS4

Register Name: TGCCS1, TGCCS2, TGCCS3, TGCCS4

Register Description: Transmit Gapped Clock Channel Select Registers

Address (hex): 01CC to 01CF, 03CC to 03CF, 05CC to 05CF, 07CC to 07CF

Bit #	7	6	5	4	3	2	1	0
Name	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1
Name	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9
Name	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17
Name	CH32	CH31	CH30	CH29	CH28	CH27	CH26	CH25
Default	0	0	0	0	0	0	0	0

Bits 7 to 0 : Transmit Channels 32 to 1 Gapped Clock Channel Select Bits (CH32 to CH1)

0 = no clock is present on TCHMRK during this channel time

1 = output a clock on TCHMRK during this channel time. The clock will be synchronous with TCLK.

11.7.11 Additional (Sa) and International (Si) Bit Operation (E1 Mode)

Register Name: TAF

Register Description: Transmit Align Frame Register

Address (hex): 0164, 0364, 0564, 0764

Bit#	7	6	5	4	3	2	1	0
Name	Si	0	0	1	1	0	1	1
Default	0	0	0	1	1	0	1	1

Bit 7: International Bit (Si)

Bit 6 : Frame Alignment Signal Bit (0)

Bit 5 : Frame Alignment Signal Bit (0)

Bit 4 : Frame Alignment Signal Bit (1)

Bit 3: Frame Alignment Signal Bit (1)

Bit 2 : Frame Alignment Signal Bit (0)

Bit 1 : Frame Alignment Signal Bit (1)

Bit 0 : Frame Alignment Signal Bit (1)

Register Name: TNAF

Register Description: Transmit Non-Align Frame Register

Address (hex): 0165, 0365, 0565, 0765

Bit#	7	6	5	4	3	2	1	0
Name	Si	1	Α	Sa4	Sa5	Sa6	Sa7	Sa8
Default	0	1	0	0	0	0	0	0

Bit 7: International Bit (Si)

Bit 6 : Frame Non-Alignment Signal Bit (1)

Bit 5 : Remote Alarm [used to transmit the alarm (A)]

Bit 4 : Additional Bit 4 (Sa4)

Bit 3: Additional Bit 5 (Sa5)

Bit 2 : Additional Bit 6 (Sa6)

Bit 1 : Additional Bit 7 (Sa7)

Bit 0 : Additional Bit 8 (Sa8)

Register Name: TSiAF

Register Description: Transmit Si Bits of the Align Frame

Address (hex): 0166, 0366, 0566,0766

Bit# 7 6 5 3 2 1 0 TSiF8 TSiF6 TSiF0 Name TSiF14 TSiF12 TSiF10 TSiF4 TSiF2 Default 0 0 0 0 0 0 0 0

Bit 7: Si Bit of Frame 14 (TSiF14)

Bit 6 : Si Bit of Frame 12 (TSiF12)

Bit 5: Si Bit of Frame 10 (TSiF10)

Bit 4 : Si Bit of Frame 8 (TSiF8)

Bit 3: Si Bit of Frame 6 (TSiF6)

Bit 2: Si Bit of Frame 4 (TSiF4)

Bit 1 : Si Bit of Frame 2 (TSiF2)

Bit 0 : Si Bit of Frame 0 (TSiF0)

Register Name: TSiNAF

Register Description: Transmit Si Bits of the Non-Align Frame

Address (hex): 0167, 0367, 0567, 0767

Bit# 7 2 6 5 4 3 1 0 TSiF15 TSiF13 Name TSiF11 TSiF9 TSiF7 TSiF5 TSiF3 TSiF1 Default 0 0 0 0 0 0 0 0

Bit 7: Si Bit of Frame 15 (TSiF15)

Bit 6 : Si Bit of Frame 13 (TSiF13)

Bit 5: Si Bit of Frame 11 (TSiF11)

Bit 4 : Si Bit of Frame 9 (TSiF9)

Bit 3 : Si Bit of Frame 7 (TSiF7)

Bit 2 : Si Bit of Frame 5 (TSiF5)

Bit 1 : Si Bit of Frame 3 (TSiF3)

Bit 0 : Si Bit of Frame 1 (TSiF1)

Register Name: TRA

Register Description: Transmit Remote Alarm Address (hex): Transmit Remote Alarm 0168, 0368, 0568, 0768

Bit#	7	6	5	4	3	2	1	0
Name	TRAF15	TRAF13	TRAF11	TRAF9	TRAF7	TRAF5	TRAF3	TRAF1
Default	0	0	0	0	0	0	0	0

Bit 7: Remote Alarm Bit of Frame 15 (TRAF15)

Bit 6 : Remote Alarm Bit of Frame 13 (TRAF13)

Bit 5 : Remote Alarm Bit of Frame 11 (TRAF11)

Bit 4 : Remote Alarm Bit of Frame 9 (TRAF9)

Bit 3 : Remote Alarm Bit of Frame 7 (TRAF7)

Bit 2 : Remote Alarm Bit of Frame 5 (TRAF5)

Bit 1 : Remote Alarm Bit of Frame 3 (TRAF3)

Bit 0 : Remote Alarm Bit of Frame 1 (TRAF1)

Register Name: TSa4

Register Description: Transmit Sa4 Bits
Address (hex): 0169, 0369, 0569,0769

Bit#	7	6	5	4	3	2	1	0
Name	TSa4F15	TSa4F13	TSa4F11	TSa4F9	TSa4F7	TSa4F5	TSa4F3	TSa4F1
Default	0	0	0	0	0	0	0	0

Bit 7 : Sa4 Bit of Frame 15 (TSa4F15)

Bit 6: Sa4 Bit of Frame 13 (TSa4F13)

Bit 5 : Sa4 Bit of Frame 11 (TSa4F11)

Bit 4 : Sa4 Bit of Frame 9 (TSa4F9)

Bit 3: Sa4 Bit of Frame 7 (TSa4F7)

Bit 2: Sa4 Bit of Frame 5 (TSa4F5)

Bit 1 : Sa4 Bit of Frame 3 (TSa4F3)

Bit 0 : Sa4 Bit of Frame 1 (TSa4F1)

Register Name: TSa5

Register Description: Transmitted Sa5 Bits
Address (hex): 016A, 036A, 056A, 076A

Bit#	7	6	5	4	3	2	1	0
Name	TSa5F15	TSa5F13	TSa5F11	TSa5F9	TSa5F7	TSa5F5	TSa5F3	TSa5F1
Default	0	0	0	0	0	0	0	0

Bit 7 : Sa5 Bit of Frame 15 (TSa5F15)

Bit 6: Sa5 Bit of Frame 13 (TSa5F13)

Bit 5 : Sa5 Bit of Frame 11 (TSa5F11)

Bit 4 : Sa5 Bit of Frame 9 (TSa5F9)

Bit 3: Sa5 Bit of Frame 7 (TSa5F7)

Bit 2 : Sa5 Bit of Frame 5 (TSa5F5)

Bit 1 : Sa5 Bit of Frame 3 (TSa5F3)

Bit 0 : Sa5 Bit of Frame 1 (TSa5F1)

Register Name: TSa6

Register Description: Transmit Sa6 Bits

Address (hex): 016B, 036B, 056B, 076B

Bit #	7	6	5	4	3	2	1	0
Name	TSa6F15	TSa6F13	TSa6F11	TSa6F9	TSa6F7	TSa6F5	TSa6F3	TSa6F1
Default	0	0	0	0	0	0	0	0

Bit 7 : Sa6 Bit of Frame 15 (TSa6F15)

Bit 6 : Sa6 Bit of Frame 13 (TSa6F13)

Bit 5 : Sa6 Bit of Frame 11 (TSa6F11)

Bit 4 : Sa6 Bit of Frame 9 (TSa6F9)

Bit 3: Sa6 Bit of Frame 7 (TSa6F7)

Bit 2 : Sa6 Bit of Frame 5 (TSa6F5)

Bit 1 : Sa6 Bit of Frame 3 (TSa6F3)

Bit 0 : Sa6 Bit of Frame 1 (TSa6F1)

Register Name: TSa7

Register Description: Transmit Sa7 Bits
Address (hex): 016C, 036C, 056C, 076C

Bit# 7 6 5 3 2 0 Name TSa7F15 TSa7F13 TSa7F11 TSa7F9 TSa7F7 TSa7F5 TSa7F3 TSa7F1 Default 0 0 0 0 0 0

Bit 7: Sa7 Bit of Frame 15 (TSa4F15)

Bit 6: Sa7 Bit of Frame 13 (TSa7F13)

Bit 5 : Sa7 Bit of Frame 11 (TSa7F11)

Bit 4 : Sa7 Bit of Frame 9 (TSa7F9)

Bit 3: Sa7 Bit of Frame 7 (TSa7F7)

Bit 2 : Sa7 Bit of Frame 5 (TSa7F5)

Bit 1 : Sa7 Bit of Frame 3 (TSa7F3)

Bit 0 : Sa7 Bit of Frame 1 (TSa7F1)

Register Name: TSa8

Register Description: Transmit Sa8 Bits
Address (hex): 016D, 036D, 056D, 076D

Bit# 7 6 5 4 3 1 0 TSa8F15 TSa8F13 TSa8F11 TSa8F9 TSa8F7 TSa8F5 TSa8F3 Name TSa8F1 Default 0 0 0 0 0 0 0 0

Bit 7 : Sa8 Bit of Frame 15 (TSa8F15)

Bit 6: Sa8 Bit of Frame 13 (TSa8F13)

Bit 5 : Sa8 Bit of Frame 11 (TSa8F11)

Bit 4 : Sa8 Bit of Frame 9 (TSa8F9)

Bit 3: Sa8 Bit of Frame 7 (TSa8F7)

Bit 2 : Sa8 Bit of Frame 5 (TSa8F5)

Bit 1 : Sa8 Bit of Frame 3 (TSa8F3)

Bit 0 : Sa8 Bit of Frame 1 (TSa8F1)

Register Name: TSACR

Register Description: Transmit Sa Bit Control Register

Address (hex): 0114, 0314, 0514, 0714

Bit#	7	6	5	4	3	2	1	0
Name	SiAF	SiNAF	RA	Sa4	Sa5	Sa6	Sa7	Sa8
Default	0	0	0	0	0	0	0	0

Bit 7: International Bit in Align Frame Insertion Control Bit (SiAF)

0 = do not insert data from the TSiAF register into the transmit data stream

1 = insert data from the TSiAF register into the transmit data stream

Bit 6 : International Bit in Non-Align Frame Insertion Control Bit (SiNAF)

0 = do not insert data from the TSiNAF register into the transmit data stream

1 = insert data from the TSiNAF register into the transmit data stream

Bit 5: Remote Alarm Insertion Control Bit (RA)

0 = do not insert data from the TRA register into the transmit data stream

1 = insert data from the TRA register into the transmit data stream

Bit 4 : Additional Bit 4 Insertion Control Bit (Sa4)

0 = do not insert data from the TSa4 register into the transmit data stream

1 = insert data from the TSa4 register into the transmit data stream

Bit 3 : Additional Bit 5 Insertion Control Bit (Sa5)

0 = do not insert data from the TSa5 register into the transmit data stream

1 = insert data from the TSa5 register into the transmit data stream

Bit 2 : Additional Bit 6 Insertion Control Bit (Sa6)

0 = do not insert data from the TSa6 register into the transmit data stream

1 = insert data from the TSa6 register into the transmit data stream

Bit 1: Additional Bit 7 Insertion Control Bit (Sa7)

0 = do not insert data from the TSa7 register into the transmit data stream

1 = insert data from the TSa7 register into the transmit data stream

Bit 0 : Additional Bit 8 Insertion Control Bit (Sa8)

0 = do not insert data from the TSa8 register into the transmit data stream

1 = insert data from the TSa8 register into the transmit data stream

11.7.12 E1 Transmit HDLC Controller

Register Name: THC1

Register Description: Transmit HDLC Control Register 1

Address (hex): 0110, 0310, 0510, 0710

Bit# 7 6 4 3 2 0 TZSD **NOFS** TEOML THMS **TFS** TEOM **TCRCD** Name THR Default 0 0 0 0 0 0 0 0

Bit 7: Number Of Flags Select (NOFS)

0 = send one flag between consecutive messages

1 = send two flags between consecutive messages

Bit 6 : Transmit End of Message and Loop (TEOML) To loop on a message, should be set to a one just before the last data byte of an HDLC packet is written into the transmit FIFO. The message will repeat until the user clears this bit or a new message is written to the transmit FIFO. If the host clears the bit, the looping message will complete then flags will be transmitted until new message is written to the FIFO. If the host terminates the loop by writing a new message to the FIFO the loop will terminate, one or two flags will be transmitted and the new message will start. If not disabled via TCRCD, the transmitter will automatically append a 2-byte CRC code to the end of all messages.

Bit 5 : Transmit HDLC Reset (THR) Will reset the transmit HDLC controller and flush the transmit FIFO. An abort followed by 7Eh or FFh flags/idle will be transmitted until a new packet is initiated by writing new data into the FIFO. Must be cleared and set again for a subsequent reset.

0 = Normal operation

1 = Reset transmit HDLC controller and flush the transmit FIFO

Bit 4: Transmit HDLC Mapping Select (THMS)

0 = Transmit HDLC assigned to channels

1 = Transmit HDLC assigned to FDL(T1 mode), Sa Bits(E1 mode)

Bit 3: Transmit Flag/Idle Select (TFS) This bit selects the inter-message fill character after the closing and before the opening flags (7Eh).

0 = 7Eh

1 = FFh

Bit 2 : Transmit End of Message (TEOM) Should be set to a one just before the last data byte of an HDLC packet is written into the transmit FIFO at THF. If not disabled via TCRCD, the transmitter will automatically append a 2-byte CRC code to the end of the message.

Bit 1 : Transmit Zero Stuffer Defeat (TZSD) The Zero Stuffer function automatically inserts a zero in the message field (between the flags) after 5 consecutive ones to prevent the emulation of a flag or abort sequence by the data pattern. The receiver automatically removes (destuffs) any zero after 5 ones in the message field.

0 = enable the zero stuffer (normal operation)

1 = disable the zero stuffer

Bit 0 : Transmit CRC Defeat (TCRCD) A 2-byte CRC code is automatically appended to the outbound message. This bit can be used to disable the CRC function.

0 = enable CRC generation (normal operation)

1 = disable CRC generation

Register Name: THC2

Register Description: Transmit HDLC Control Register 2

Address (hex): 0113, 0313, 0513, 0713

Bit#	7	6	5	4	3	2	1	0
Name	TABT	_	THCEN	THCS4	THCS3	THCS2	THCS1	THCS0
Default	0	0	0	0	0	0	0	0

Bit 7 : Transmit Abort (TABT) A 0-to-1 transition will cause the FIFO contents to be dumped and one FEh abort to be sent followed by 7Eh or FFh flags/idle until a new packet is initiated by writing new data into the FIFO. Must be cleared and set again for a subsequent abort to be sent.

Bit 6 : Unused. Must be set = 0 for proper operation.

Bit 5: Transmit HDLC Controller Enable (THCEN)

0 = Transmit HDLC Controller is not enabled

1 = Transmit HDLC Controller is enabled

Bits 4 to 0 : Transmit HDLC Channel Select (THCS4 to 0) Determines which DSO channel will have the carry the HDLC message if enabled.

Register Name: THBSE

Register Description: Transmit HDLC Bit Suppress

Address (hex): 0111, 0311, 0511, 0711

Bit#	7	6	5	4	3	2	1	0
Name	TBSE8	TBSE7	TBSE6	TBSE5	TBSE4	TBSE3	TBSE2	TBSE1
Default	0	0	0	0	0	0	0	0

Bit 7: Transmit Bit 8 Suppress (TBSE8) MSB of the channel. Set to one to stop this bit from being used.

Bit 6: Transmit Bit 7 Suppress (TBSE7) Set to one to stop this bit from being used.

Bit 5: Transmit Bit 6 Suppress (TBSE6) Set to one to stop this bit from being used.

Bit 4: Transmit Bit 5 Suppress/Sa4 Bit Suppress (TBSE5) Set to one to stop this bit from being used

Bit 3: Transmit Bit 4 Suppress/Sa5 Bit Suppress (TBSE4) Set to one to stop this bit from being used

Bit 2: Transmit Bit 3 Suppress/Sa6 Bit Suppress (TBSE3) Set to one to stop this bit from being used

Bit 1: Transmit Bit 2 Suppress/Sa7 Bit Suppress (TBSE2) Set to one to stop this bit from being used

Bit 0 : Transmit Bit 1 Suppress/Sa8 Bit Suppress (TBSE1) LSB of the channel. Set to one to stop this bit from being used.

11.7.12.1 Transmit HDLC FIFO Control

Control of the transmit FIFO is accomplished via the Transmit HDLC FIFO Control (THFC). The FIFO Control register sets the watermarks for the receive FIFO.

When the transmit FIFO empties below the low watermark, the TLWM bit in the appropriate HDLC status register will be set. TLWM is a real-time bit and will remain set as long as the transmit FIFO's write pointer is below the watermark. If enabled, this condition can also cause an interrupt via the INT pin.

Register Name: THFC

Register Description: Transmit HDLC FIFO Control Register

Address (hex): 0187, 0387, 0587, 0787

Bit#	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	TFLWM1	TFLWM0
Default	0	0	0	0	0	0	0	0

Bits 7 to 2: Unused. Must be set = 0 for proper operation.

Bits 1 & 0 : Transmit HDLC FIFO Low-Watermark Select (TFLWM1 to TFLWM0)

TFLWM1	TFLWM0	Transmit FIFO Watermark
0	0	4 bytes
0	1	16 bytes
1	0	32 bytes
1	1	48 bytes

11.7.12.2 HDLC Status and Information

TLS2 provides status information for the transmit HDLC controller. When a particular event has occurred (or is occurring), the appropriate bit in one of these registers will be set to a one. Some of the bits in these registers are latched and some are real-time bits that are not latched. This section contains register descriptions that list which bits are latched and which are real time. With the latched bits, when an event occurs and a bit is set to a one, it will remain set until the user reads that bit. The bit will be cleared when it is read and it will not be set again until the event has occurred again. The real-time bits report the current instantaneous conditions that are occurring and the history of these bits is not latched.

Like the other latched status registers, the user will follow a read of the status bit with a write. The byte written to the register will inform the device which of the latched bits the user wishes to clear (the real time bits are not affected by writing to the status register). The user will write a byte to one of these registers, with a one in the bit positions he or she wishes to clear and a zero in the bit positions he or she does not wish to clear.

The HDLC status register, TLS2has the ability to initiate a hardware interrupt via the $\overline{\text{INT}}$ output signal. Each of the events in this register can be either masked or unmasked from the interrupt pin via the receive HDLC Interrupt Mask Register (TIM2). Interrupts will force the $\overline{\text{INT}}$ signal low when the event occurs. The $\overline{\text{INT}}$ pin will be allowed to return high (if no other interrupts are present) when the user reads the event bit that caused the interrupt to occur.

Register Name: TRTS2

Register Description: Transmit Real-Time Status Register 2 (HDLC)

Address (hex): 01B1, 03B1, 05B1, 07B1

Bit#	7	6	5	4	3	2	1	0
Name	_		_		TEMPTY	TFULL	TLWM	TNF
Default	0	0	0	0	0	0	0	0

All bits in this register are real time.

Bits 7 to 4: Unused.

Bit 3: Transmit FIFO Empty (TEMPTY) A real-time bit that is set high when the FIFO is empty.

Bit 2: Transmit FIFO Full (TFULL) A real-time bit that is set high when the FIFO is full.

Bit 1 : Transmit FIFO Below Low-Watermark Condition (TLWM) Set when the transmit 64-byte FIFO empties below the low watermark as defined by the Transmit Low-Watermark bits (TLWM).

Bit 0: Transmit FIFO Not Full Condition (TNF) Set when the transmit 64-byte FIFO has at least one byte available.

Register Name: TLS2

Register Description: Transmit Latched Status Register 2 (HDLC)

Address (hex): 0191, 0391, 0591, 0791

Bit#	7	6	5	4	3	2	1	0
Name	_	_	_	_	TUDR	TMEND	TLWMS	TNFS
Default	0	0	0	0	0	0	0	0

All bits in this register are latched and can create interrupts.

Bits 7 to 4: Unused.

- **Bit 3 : Transmit FIFO Underrun Event (TUDR)** Set when the transmit FIFO empties out without having seen the TMEND bit set. An abort is automatically sent.
- **Bit 2 : Transmit Message End Event (TMEND)** Set when the transmit HDLC controller has finished sending a message.
- **Bit 1 : Transmit FIFO Below Low-Watermark Set Condition (TLWMS)** Set when the transmit 64-byte FIFO empties beyond the low watermark as defined by the Transmit Low-Watermark bits (TLWM) (rising edge detect of TLWM).
- **Bit 0 : Transmit FIFO Not Full Set Condition (TNFS)** Set when the transmit 64-byte FIFO has at least one empty byte available for write. Rising edge detect of TNF. Indicates change of state from full to not full.

Register Name: TIM2

Register Description: Transmit Interrupt Mask Register 2

Address (hex): 01A1, 03A1, 05A1, 07A1

Bit#	7	6	5	4	3	2	1	0
Name	_	_	_		TUDR	TMEND	TLWMS	TNFS
Default	0	0	0	0	0	0	0	0

Bits 7 to 4: Unused. Must be set = 0 for proper operation.

Bit 3: Transmit FIFO Underrun Event (TUDR)

0 = interrupt masked

1 = interrupt enabled

Bit 2 : Transmit Message End Event (TMEND)

0 = interrupt masked

1 = interrupt enabled

Bit 1: Transmit FIFO Below Low Watermark Set Condition (TLWMS)

0 = interrupt masked

1 = interrupt enabled

Bit 0: Transmit FIFO Not Full Set Condition (TNFS)

0 = interrupt masked

1 = interrupt enabled

11.7.12.3 FIFO Information

The Transmit FIFO Buffer Available register indicates the number of bytes that can be written into the transmit FIFO. The count form this register informs the host as to how many bytes can be written into the transmit FIFO without overflowing the buffer. This is a real-time register. The count shall remain valid and stable during the read cycle.

Register Name: TFBA

Register Description: Transmit HDLC FIFO Buffer Available

Address (hex): 01B3, 03B3, 05B3, 07B3

Bit#	7	6	5	4	3	2	1	0
Name	_	TFBA6	TFBA5	TFBA4	TFBA3	TFBA2	TFBA1	TFBA0
Default	0	0	0	0	0	0	0	0

Bit 7: Unused.

Bits 6 to 0 : Transmit FIFO Bytes Available (TFBA6 to TFBA0) TFBA0 is the LSB.

Register Name: THF

Register Description: Transmit HDLC FIFO
Address (hex): 01B4, 03B4, 05B4, 07B4

Bit#	7	6	5	4	3	2	1	0
Name	THD7	THD6	THD5	THD4	THD3	THD2	THD1	THD0
Default	0	0	0	0	0	0	0	0

Bit 7: Transmit HDLC Data Bit 7 (THD7) MSB of a HDLC packet data byte.

Bit 6: Transmit HDLC Data Bit 6 (THD6)

Bit 5 : Transmit HDLC Data Bit 5 (THD5)

Bit 4 : Transmit HDLC Data Bit 4 (THD4)

Bit 3: Transmit HDLC Data Bit 3 (THD3)

Bit 2: Transmit HDLC Data Bit 2 (THD2)

Bit 1 : Transmit HDLC Data Bit 1 (THD1)

Bit 0 : Transmit HDLC Data Bit 0 (THD0) LSB of a HDLC packet data byte.

11.7.13 Interfacing the E1 Transmitter to the BERT

Register Name: TBICR

Register Description: Transmit BERT Interface Control Register

Address (hex): 018A, 038A, 058A, 078A

Bit#	7	6	5	4	3	2	1	0	
Name	_	_	_		_	TBDC		TBEN	1
Default	0	0	0	0	0	0	0	0	1

Bits 7 to 3 : Unused. Must be set = 0 for proper operation.

Bit 2: Transmit BERT Direction Control (TBDC)

0 = Transmit Path: The BERT transmits toward the network.

1 = Backplane: The BERT transmits toward the system backplane.

Bit 1: Unused. Must be set = 0 for proper operation.

Bit 0: Transmit BERT Enable (TBEN)

0 = Transmit BERT is disabled.

1 = Transmit BERT is enabled.

Register Name: TBCS1, TBCS2, TBCS3, TBCS4

Register Description: Transmit BERT Channel Select Registers

Address (hex): 01D4 to 01D7, 03D4 to 03D7, 05D4 to 05D7, 07D4 to 07D7

Setting any of the CH1 through CH32 bits in the TBCS1 through TBCS4 registers will map data into those channels from the on-board BERT. TBEN must be set to one for these registers to have effect. Multiple, or all channels may be selected simultaneously. These registers work with the transmit-side framer only.

Bit #	7	6	5	4	3	2	1	0	
Name	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	ד [
Name	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9] 1
Name	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17] 1
Name	CH32	CH31	CH30	CH29	CH28	CH27	CH26	CH25	ד [
Default	0	0	0	0	0	0	0	0	

TBCS1 TBCS2 TBCS3 TBCS4

Register Name: TBBS

Register Description: Transmit BERT Bit Suppress Register

Address (hex): 018B, 0038B, 058B, 078B

Bit#	7	6	5	4	3	2	1	0
Name	BSE8	BSE7	BSE6	BSE5	BSE4	BSE3	BSE2	BSE1
Default	0	0	0	0	0	0	0	0

Bit 7: Transmit Channel Bit 8 Suppress (BSE8) MSB of the channel. Set to one to stop this bit from being used.

Bit 6: Transmit Channel Bit 7 Suppress (BSE7) Set to one to stop this bit from being used.

Bit 5: Transmit Channel Bit 6 Suppress (BSE6) Set to one to stop this bit from being used.

Bit 4: Transmit Channel Bit 5 Suppress (BSE5) Set to one to stop this bit from being used.

Bit 3: Transmit Channel Bit 4 Suppress (BSE4) Set to one to stop this bit from being used.

Bit 2: Transmit Channel Bit 3 Suppress (BSE3) Set to one to stop this bit from being used.

Bit 1: Transmit Channel Bit 2 Suppress (BSE2) Set to one to stop this bit from being used.

Bit 0: Transmit Channel Bit 1 Suppress (BSE1) LSB of the channel. Set to one to stop this bit from being used.

11.7.14 E1 Transmit Synchronizer

Register Name: TSYNCC

Register Description: Transmit Synchronizer Control Register

Address (hex): 018E, 038E, 058E, 078E

Bit#	7	6	5	4	3	2	1	0
Name	_	_			CRC4	TSEN	SYNCE	RESYNC
Default	0	0	0	0	0	0	0	0

Bits 7 to 4: Unused. Must be set = 0 for proper operation.

Bit 3 : CRC4 Enable (RCRC4)

0 = CRC4 disabled

1 = CRC4 enabled

Bit 2: Transmit Synchronizer Enable (TSEN)

0 = transmit synchronizer disabled

1 = transmit synchronizer enabled

Bit 1 : Sync Enable (SYNCE)

0 = auto resync enabled

1 = auto resync disabled

Bit 0 : Resynchronize (RESYNC) When toggled from low to high, a resynchronization of the transmit-side framer is initiated. Must be cleared and set again for a subsequent resync.

Register Name: TLS3

Register Description: Transmit Latched Status Register 3 (Synchronizer)

Address (hex): 0192, 0392, 0592, 0792

Bit#	7	6	5	4	3	2	1	0
Name	_	_	_	_	_		LOF	LOFD
Default	0	0	0	0	0	0	0	0

Bits 7 to 2: Unused.

Bit 1 : Loss of Frame (LOF) A real-time bit that indicates that the transmit synchronizer is searching for the sync pattern in the incoming data stream.

Bit 0 : Loss-of-Frame Synchronization Detect (LOFD) This latched bit is set when the transmit synchronizer is searching for the sync pattern in the incoming data stream.

Register Name: TIM3

Register Description: Transmit Interrupt Mask Register 3 (Synchronizer)

Address (hex): 01A2, 03A2, 05A2, 07A2

Bit #	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	_	LOFD
Default	0	0	0	0	0	0	0	0

Bits 7 to 1: Unused. Must be set = 0 for proper operation.

Bit 0 : Loss-of-Frame Synchronization Detect (LOFD)

0 = Interrupt masked

1 = Interrupt enabled

12 LINE INTERFACE UNIT (LIU)

Table 12-1 LIU Register Map

ADDRESS (hex) PORT 1 + 0h PORT 2 + 200h PORT 3 + 400h PORT 4 + 600h	NAME	DESCRIPTION
0800	LCCR1	LIU Common Control Register 1
0801	LTCR	LIU Transmit Control Register
0802	LCCR2	LIU Common Control Register 2
0803	LRSR	LIU Real Status Register
0804	LSIMR	LIU Status Interrupt Mask Register
0805	LLSR	LIU Latched Status Register
0806	LRSL	LIU Receive Signal Level
0807	LRCR	LIU Receive Control Register
0808-080F	-	Unused. Must be set = 0 for proper operation.

12.1 LIU Registers

Register Name: LCCR1

Register Description: LIU Common Control Register 1

Address (hex): 0800, 0A00, 0C00, 0E00

Bit#	7	6	5	4	3	2	1	0
Name				JADS	JAPS1	JAPS0	LMODE	LSC
Default	0	0	0	0	0	0	0	0

Bits 7 to 5 : Unused. Must be set = 0 for proper operation.

Bit 4: Jitter Attenuator Depth Select (JADS)

0 = JA FIFO depth set to 128 bits.

1 = JA FIFO depth set to 32 bits.

Bits 3 & 2: Jitter Attenuator Position Select 1 and 0 (JAPS1, JAPS0) Used to select the position of the jitter attenuator.

JAPS1	JAPS0	Function		
0	0	JA in the receive path		
0	1	JA in the transmit path		
1	0	JA is not used		
1	1	JA is not used		

Bit 1: LIU Mode Selection (LMODE)

0 = E1 LIU functions and pulse shapes are selected.

1 = T1/J1 LIU functions and pulse shapes are selected.

Bit 0 : LOS Criteria Selection (LCS) This bit is used for LOS Selection Criteria. In E1 Mode, if set this bit uses ETSI (300233) mode selections. If reset, this bit uses G.775 criteria. In T1/J1 Mode, T1.231 criteria are selected.

Register Name: LTCR

Register Description: LIU Transmit Control Register

Address (hex): 0801, 0A01, 0C01, 0E01

Bit#	7	6	5	4	3	2	1	0
Name	-	ITTIOFF	TIMPL1	TIMPL0	-	TPSS2	TPSS1	TPSS0
Default	0	0	0	0	0	0	0	0

Bit 7: Unused. Must be set = 0 for proper operation.

Bit 6 : Internal Transmit Terminating Impedance Off (ITTIOFF) If this bit is set, the transmit load impedance is turned off. Note that the user cable impedance has to be specified by TIMPL bits. The transmitter performance will not be optimum if the transmitter cable impedance (TIMPL2 to 0 bits) is not specified.

Bits 5 & 4: Transmit Load Impedance 1 and 0 (TIMPL1, TIMPL0) Used to select the transmit load source impedance. These have to be set according to the cable impedance. Even if the Internal Load Impedance is turned off (via ITTIOFF), the external cable impedance must be specified for optimum operation by TIMPL1 and TIMPL0. 110Ω with T1 selection is the J1 Mode.

Table 12-2 Internal Transmit Termination Select

TIMPL1	TIMPLO	TRANSMIT TERMINATION (Ω)
0	0	75
0	1	100
1	0	110
1	1	120

Bit 3: Unused. Must be set = 0 for proper operation.

Bits 2 to 0: Transmit Pulse Shape Selection 2, 1 and 0 (TPSS2, TPSS1, TPSS0) Used to select the transmit pulse shape. The pulse shape has voltage level and load impedance associated with it once the T1/J1/ E1 selection is made by settings in the LCCR register.

Table 12-3 E1 Transmit Pulse Shape Selection

Į	TPSS2	TPSS1	TPSS0	APPLICATION
Ī	0	0	0	75Ω Coaxial
Ī	0	0	1	120Ω Twisted pair

Table 12-4 T1/J1 Transmit Pulse Shape Selection

TPSS2	TPSS1	TPSS0	APPLICATION				
0	0	0	Long Haul (0dB)				
0	0	0	0-133 ft DSX				
0	0	1	133-266 ft DSX				
0	1	0	266-399 ft DSX				
0	1	1	399-533 ft DSX				
1	0	0	533-655 ft DSX				
1	0	1	-7.5 dB CSU ¹				
1	1	0	-15 dB CSU ¹				
1	1	1	-22.5 dB CSU ¹				

Register Name: LCCR2

Register Description: LIU Common Control Register 2

Address (hex): 0802, 0A02, 0C02, 0E02

Bit#	7	6	5	4	3	2	1	0
Name	TAIS	ATAIS	LLB	ALB	RLB	TPDE	RPDE	TE
Default	0	0	0	0	0	0	0	0

Bit 7 :Transmit AIS (TAIS) If this bit is set AIS is sent using MCLK as the reference clock. The data coming from the framer is replaced by all ones data.

Bit 6 : Automatic Transmit AIS (ATAIS) If this bit is set AIS is sent using MCLK as the reference clock if there is a LOS. The data coming from the Framer is replaced by all ones data.

Bit 5 : Local Loopback (LLB)

Bit 4: Analog Loopback (ALB)

Bit 3: Remote Loopback (RLB)

Bit 2 : Transmit Power-Down Enable (TPDE) Setting this bit will power-down the transmit LIU and tri-state TTIP and TRING.

Bit 1: Receiver Power-Down Enable (RPDE) If this bit is set the receiver LIU for the transceiver is powered down.

Bit 0 : Transmit Enable (TE) If this bit is set the transmitter output for the transceiver is enabled. This function is overridden by the TXEnable pin. If it is low, the TTIP/TRING are always High-Z.

Register Name: LRSR

Register Description: LIU Real Status Register 0803, 0A03, 0C03, 0E03

Bit#	7	6	5	4	3	2	1	0
Name	-	-	OEQ	UEQ	-	SCS	ocs	LOSS
Default	0	0	0	0	0	0	0	0

Bits 7 to 6: Unused.

Bit 5: (OEQ)

Bit 4: (UEQ)

Bit 3: Unused.

Bit 2 : Open Circuit Status (OCS) If this bit is set, it indicates that there is an open circuit at the transmit driver for the transceiver. Please consult the factory for open circuit detection details if the transmitter is configured with impedance match on and CSU filters are selected.

Bit 1 : Short Circuit Status (SCS) If this bit is set, it indicates that there is short circuit at the transmit driver for the transceiver. The short circuit resistance has to be 25Ω (typ) for short circuit detection

Bit 0: Loss of Signal Status (LOS) If this bit is set it indicates LOS for the transceiver.

Register Name: LSIMR

Register Description: LIU Status Interrupt Mask Register

Address (hex): 0804, 0A04, 0C04, 0E04

Bit#	7	6	5	4	3	2	1	0
Name	JALTRSIM	OCSRIM	SCSRIM	LOSRIM	JALTSSIM	OCSSIM	SCSSIM	LOSSIM
Default	0	0	0	0	0	0	0	0

Bit 7: Jitter Attenuator Limit Trip Reset Status Interrupt Mask (JALTRIM) If this bit is set, Jitter Attenuator Limit Trip Status reset can generate an Interrupt.

Bit 6 : Open Circuit Status Reset Interrupt Mask (OCSRIM) If this bit is set, Open circuit Status reset can generate an Interrupt.

Bit 5 : Short Circuit Status Reset Interrupt Mask (SCSRIM) If this bit is set, Short circuit Status reset can generate an Interrupt.

Bit 4: Loss of Signal Status Reset Interrupt Mask (LOSRIM) If this bit is set, LOS Status resets can generate an Interrupt.

Bit 3: Jitter Attenuator Limit Trip Set Status Interrupt Mask (JALTSSIM) If this bit is set, Jitter Attenuator Limit Trip Status changes can generate an Interrupt.

Bit 2 : Open circuit Status Set Interrupt Mask (OCSSIM) If this bit is set, Open circuit Status changes can generate an Interrupt.

Bit 1 : Short Circuit Status Set Interrupt Mask (SCSSIM) If this bit is set, Short circuit Status changes can generate an Interrupt.

Bit 0 : Loss of Signal Status Set Interrupt Mask (LOSSIM) If this bit is set, LOS Status changes can generate an Interrupt.

Register Name: LLSR

Register Description: LIU Latched Status Register Address (hex): 0805, 0A05, 0C05, 0E05

Bit#	7	6	5	4	3	2	1	0
Name	JFLTRLS	OCRLS	SCRLS	LOSRLS	JALTSLS	OCSLS	SCSLS	LOSSLS
Default	0	0	0	0	0	0	0	0

Bit 7: Jitter Attenuator Limit Trip Reset Latched Status (JALTRLS) This bit is set if Jitter Attenuator Trip Status bit reset.

Bit 6: Open Circuit Reset Latched Status (OCRLS) This bit is set if Open Circuit Status bit reset.

Bit 5: Short Circuit Reset Latched Status (SCRLS) This bit is set if the Short Circuit Status bit reset.

Bit 4: Loss of Signal Reset Latched Status (LOSRLS) This bit is set if the Short Circuit Status bit reset.

Bit 3: Jitter Attenuator Limit Trip Set Latched Status (JFLTLS) This bit is set if the Jitter Attenuator Trip Status bit is set.

Bit 2: Open Circuit Set Latched Status (OCSLS) This bit is set when Open circuit status bit is set.

Bit 1 : Short Circuit Set Latched Status (SCSLS) This bit is set when Short circuit status bit is set.

Bit 0: Loss of Signal Set Latched Status (LOSSLS) This bit is set when LOS status bit is set.

Register Name: LRSL

Register Description: LIU Receive Signal Level Address (hex): 0806, 0A06, 0C06, 0E06

Bit#	7	6	5	4	3	2	1	0
Name	RSL3	RSL2	RLS1	RLS0	-	-	-	-
Default	0	0	0	0	0	0	0	0

Bit 7 to 4 : Receiver Signal Level 3, 2, 1, and 0 (RSL3, RSL2, RSL1, RSL0) Receive Signal Level indication. These bits are only applicable in Long Haul Mode.

Table 12-5 Receive Level Indication

RSL3	RSL2	RSL1	RSL0	Receive Level (dB)	Receive Level (dB)
				T1	E1
0	0	0	0	>-2.5	>-2.5
0	0	0	1	-2.5 to -5	-2.5 to -5
0	0	1	0	-5 to -7.5	-5 to -7.5
0	0	1	1	-7.5 to -10	-7.5 to -10
0	1	0	0	-10 to -12.5	-10 to -12.5
0	1	0	1	-12.5 to -15	-12.5 to -15
0	1	1	0	-15 to -17.5	-15 to -17.5
0	1	1	1	-17.5 to -20	-17.5 to -20
1	0	0	0	-20 to -22.5	-20 to -22.5
1	0	0	1	-22.5 to -25	-22.5 to -25
1	0	1	0	-25 to -27.5	-25 to -27.5
1	0	1	1	-27.5 to -30	-27.5 to -30
1	1	0	0	-30 to -34	-30 to -34
1	1	0	1	<-34	-34 to -38
1	1	1	0		-38 to -43
1	1	1	1		<-43

Bits 3 to 0 : Unused.

Register Name: LRCR

Register Description: LIU Receive Control Register

Address (hex): **0807, 0A07, 0C07, 0E07**

Bit #	7	6	5	4	3	2	1	0
Name	RG703	IRTOFF	IRTS1	IRTS0	RTTR	RMME	RSMGS1	RSMGS0
Default	0	0	0	0	0	0	0	0

Bit 7 : Receive G.703 Clock (RG703) When set = 1, the receiver expects a 2.048 MHz (E1 mode) or 1.544 MHz (T1 mode) synchronization clock (as specified by G.703) at RTIP/RRING.

Bit 6: Internal Receive Termination Off (IRTOFF) Disables the internal receive termination.

0 = internal receive termination enabled, IRTS1 and IRTS0 select termination value

1 = internal receive termination disabled.

Bit 5 & 4 : Internal Receive Termination Select 1, 0 (IRTS1, IRTS0) These bits select the internal receive termination. These have to be set to match cable impedance. If the internal receive termination is disabled via IRTOFF, IRTS1 and IRTS2 should still be set to match the external cable characteristics for optimum operation.

Table 12-6 Internal Receive Termination Selection

IRTS0	IRTS1	INTERNAL RECEIVE TERMINATION (Ω)
0	0	75
0	1	100
1	0	110
1	1	120

Bit 3 : Receive Transformer Turns Ratio (RTTR) This bit is used to select receive transformer turns ratio 1:1 or 2:1 operation.

0 = 1:1 turns ratio (normal mode)

1 = 2:1 turns ratio (short haul applications only)

Bit 2 : Receive Monitor Mode Enable (RMME) When set = 1, the receive monitor mode is enabled. A resistive gain will be added to the normal cable loss sensitivity. The resistive gain is determined by RSMGS1 and RSMGS0.

Bits 1 & 0 : Receive Sensitivity / Monitor Gain Select 1, 0 (RSMGS1, RSMGS0) When RMME = 0, these bits are used to select the maximum receive sensitivity. When RMME = 1, these bits are used to select the receive monitor mode gain.

Table 12-7 Monitor Gain and Maximum Receive Sensitivity Selection

RMME	RSMGS1	RSMGS0	MAXIMUM RECEIVE SENSITIVITY	RECEIVE MONITOR GAIN SETTINGS
0	0	0	12 dB	0
0	0	1	20 dB	0
0	1	0	30 dB	0
0	1	1	36 db for T1 43 db for E1	0
1	0	0	30 dB	14
1	0	1	22.5 dB	20
1	1	0	17.5 dB	26
1	1	1	12 dB	32

13 BIT ERROR RATE TESTER (BERT)

Table 13-1 BERT Register Map

ADDRESS (hex) PORT 1 + 0h PORT 2 + 200h PORT 3 + 400h PORT 4 + 600h	NAME	DESCRIPTION
00E0	BCR	BERT Control Register
00E1		Unused
00E2	BPCR1	BERT Pattern Configuration Register #1
00E3	BPCR2	BERT Pattern Configuration Register #2
00E4	BSPR1	BERT Seed/Pattern Register #1
00E5	BSPR2	BERT Seed/Pattern Register #2
00E6	BSPR3	BERT Seed/Pattern Register #3
00E7	BSPR4	BERT Seed/Pattern Register #4
00E8	TEICR	Transmit Error Insertion Control Register
00E9		Unused
00EA		Unused
00EB		Unused
00EC	BSR	BERT Status Register
00ED		Unused
00EE	BSRL	BERT Status Register Latched
00EF		Unused
00F0	BSRIE	BERT Status Register Interrupt Enable
00F1		Unused
00F2		Unused
00F3		Unused
00F4	RBECR1	Receive Bit Error Count Register #1
00F5	RBECR2	Receive Bit Error Count Register #2
00F6	RBECR3	Receive Bit Error Count Register #3
00F7		Unused
00F8	RBCR1	Receive Bit Count Register #1
00F9	RBCR2	Receive Bit Count Register #2
00FA	RBCR3	Receive Bit Count Register #3
00FB	RBCR4	Receive Bit Count Register #4
00FC		Unused
00FD		Unused
00FE		Unused
00FF		Unused

13.1 BERT Register Bit Descriptions

Register Name: BCR

Register Description: BERT Control Register

Register Address: E0h

Bit #	7	6	5	4	3	2	1	0
Name	PMUM	LPMU	RNPL	RPIC	MPR	APRD	TNPL	TPIC
Default	0	0	0	0	0	0	0	0

Bit 7/ Performance Monitoring Update Mode (PMUM) – When 0, a performance monitoring update is initiated by the LPMU register bit. When 1, a performance monitoring update is initiated by the receive performance monitoring update signal (RPMU). Note: If RPMU or LPMU is one, changing the state of this bit may cause a performance monitoring update to occur.

Bit 6/ Local Performance Monitoring Update (LPMU) – This bit causes a performance monitoring update to be initiated if local performance monitoring update is enabled (PMUM = 0). A 0 to 1 transition causes the performance monitoring registers to be updated with the latest data, and the counters reset (0 or 1). For a second performance monitoring update to be initiated, this bit must be set to 0, and back to 1. If LPMU goes low before the PMS bit goes high, an update might not be performed. This bit has no affect when PMUM=1.

Bit 5/ Receive New Pattern Load (RNPL) – A zero to one transition of this bit will cause the programmed test pattern (QRSS, PTS, PLF[4:0], PTF[4:0], and BSP[31:0]) to be loaded in to the receive pattern generator. This bit must be changed to zero and back to one for another pattern to be loaded. Loading a new pattern will forces the receive pattern generator out of the "Sync" state which causes a resynchronization to be initiated. Note: QRSS, PTS, PLF[4:0], PTF[4:0], and BSP[31:0] must not change from the time this bit transitions from 0 to 1 until four RXCK clock cycles after this bit transitions from 0 to 1.

Bit 4/ Receive Pattern Inversion Control (RPIC) – When 0, the receive incoming data stream is not altered. When 1, the receive incoming data stream is inverted.

Bit 3/ Manual Pattern Resynchronization (MPR) – A zero to one transition of this bit will cause the receive pattern generator to resynchronize to the incoming pattern. This bit must be changed to zero and back to one for another resynchronization to be initiated. Note: A manual resynchronization forces the receive pattern generator out of the "Sync" state.

Bit 2/ Automatic Pattern Resynchronization Disable (APRD) – When 0, the receive pattern generator will automatically resynchronize to the incoming pattern if six or more times during the current 64-bit window the incoming data stream bit and the receive pattern generator output bit did not match. When 1, the receive pattern generator will not automatically resynchronize to the incoming pattern. Note: Automatic synchronization is prevented by not allowing the receive pattern generator to automatically exit the "Sync" state.

Bit 1/ Transmit New Pattern Load (TNPL) – A zero to one transition of this bit will cause the programmed test pattern (QRSS, PTS, PLF[4:0], PTF[4:0], and BSP[31:0]) to be loaded in to the transmit pattern generator. This bit must be changed to zero and back to one for another pattern to be loaded. Note: QRSS, PTS, PLF[4:0], and BSP[31:0] must not change from the time this bit transitions from 0 to 1 until four TXCK clock cycles after this bit transitions from 0 to 1.

Bit 0/ Transmit Pattern Inversion Control (TPIC) – When 0, the transmit outgoing data stream is not altered. When 1, the transmit outgoing data stream is inverted.

Register Name: BPCR1

Register Description: BERT Pattern Configuration Register #1

Register Address: E2h

Bit#	7	6	5	4	3	2	1	0
Name		QRSS	PTS	PLF4	PLF3	PLF2	PLF1	PLF0
Default	0	0	0	0	0	0	0	0

Bit 6/ QRSS Enable (QRSS) – When 0, the pattern generator configuration is controlled by PTS, PLF[4:0], and PTF[4:0], and BSP[31:0]. When 1, the pattern generator configuration is forced to a PRBS pattern with a generating polynomial of $x^{20} + x^{17} + 1$. The output of the pattern generator will be forced to one if the next fourteen output bits are all zero.

Bit 5/ Pattern Type Select (PTS) – When 0, the pattern is a PRBS pattern. When 1, the pattern is a repetitive pattern.

Bit 4-0/ Pattern Length Feedback (PLF[4:0]) – These five bits control the "length" feedback of the pattern generator. The "length" feedback will be from bit n of the pattern generator (n = PLF[4:0] +1). For a PRBS signal, the feedback is an XOR of bit n and bit y. For a repetitive pattern the feedback is bit n.

Register Name: BPCR2

Register Description: BERT Pattern Configuration Register #2

Register Address: E3h

Bit#	7	6	5	4	3	2	1	0
Name				PTF4	PTF3	PTF2	PTF1	PTF0
Default	0	0	0	0	0	0	0	0

Bits 4 to 0: Pattern Tap Feedback (PTF[4:0]) – These five bits control the PRBS "tap" feedback of the pattern generator. The "tap" feedback will be from bit y of the pattern generator (y = PTF[4:0] +1). These bits are ignored when programmed for a repetitive pattern. For a PRBS signal, the feedback is an XOR of bit n and bit y.

Register Name: BSPR1

Register Description: BERT Seed/Pattern Register #1

Register Address: **E4h**

Bit#	7	6	5	4	3	2	1	0
Name	BSP7	BSP6	BSP5	BSP4	BSP3	BSP2	BSP1	BSP0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: BERT Seed/Pattern (BSP[7:0])

Register Name: BSPR2

Register Description: BERT Seed/Pattern Register #2

Register Address: E5h

Bit#	7	6	5	4	3	2	1	0
Name	BSP15	BSP14	BSP13	BSP12	BSP11	BSP10	BSP9	BSP8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: BERT Seed/Pattern (BSP[15:8])

Register Name: BSPR3

Register Description: BERT Seed/Pattern Register #2

Register Address: **E6**r

Bit #	7	6	5	4	3	2	1	0
Name	BSP23	BSP22	BSP21	BSP20	BSP19	BSP18	BSP17	BSP16
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: BERT Seed/Pattern (BSP[23:16])

Register Name: BSPR4

Register Description: BERT Seed/Pattern Register #2

Register Address: E7h

Bit #	7	6	5	4	3	2	1	0
Name	BSP31	BSP30	BSP29	BSP28	BSP27	BSP26	BSP25	BSP24
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: BERT Seed/Pattern (BSP[31:24])

BERT Seed/Pattern (BSP[31:0]) – These 32 bits are the programmable seed for a transmit PRBS pattern, or the programmable pattern for a transmit or receive repetitive pattern. BSP(31) will be the first bit output on the transmit side for a 32-bit repetitive pattern or 32-bit length PRBS. BSP(31) will be the first bit input on the receive side for a 32-bit repetitive pattern.

Register Name: TEICR

Register Description: Transmit Error Insertion Control Register

Register Address: E8h

Bit#	7	6	5	4	3	2	1	0
Name			TEIR2	TEIR1	TEIR0	BEI	TSEI	
Default	0	0	0	0	0	0	0	0

Bit 5-3/ Transmit Error Insertion Rate (TEIR[2:0]) – These three bits indicate the rate at which errors are inserted in the output data stream. One out of every 10ⁿ bits is inverted. TEIR[2:0] is the value n. A TEIR[2:0] value of 0 disables error insertion at a specific rate. A TEIR[2:0] value of 1 result in every 10th bit being inverted. A TEIR[2:0] value of 2 result in every 100th bit being inverted. Error insertion starts when this register is written to with a TEIR[2:0] value that is non-zero. If this register is written to during the middle of an error insertion process, the new error rate will be started after the next error is inserted.

Bit 2/ Bit Error Insertion Enable (BEI) – When 0, single bit error insertion is disabled. When 1, single bit error insertion is enabled.

Bit 1/ Transmit Single Error Insert (TSEI) – This bit causes a bit error to be inserted in the transmit data stream if manual error insertion is disabled (MEIMS = 0) and single bit error insertion is enabled. A 0 to 1 transition causes a single bit error to be inserted. For a second bit error to be inserted, this bit must be set to 0, and back to 1. Note: If MEIMS is low, and this bit transitions more than once between error insertion opportunities, only one error will be inserted.

Bit 0 – Unused. This bit should be set to zero for proper operation.

Register Name: BSR

Register Description: BERT Status Register

Register Address: ECh

Bit#	7	6	5	4	3	2	1	0
Name					<u>PMS</u>		BEC	<u>008</u>
Default	0	0	0	0	0	0	0	0

Bit 3/ Performance Monitoring Update Status (PMS) – This bit indicates the status of the receive performance monitoring register (counters) update. This bit will transition from low to high when the update is completed. PMS is asynchronously forced low when the LPMU bit (PMUM = 0) or RPMU signal (PMUM=1) goes low.

Bit 1/ Bit Error Count (BEC) – When 0, the bit error count is zero. When 1, the bit error count is one or more. **Bit 0/ Out Of Synchronization (OOS)** – When 0, the receive pattern generator is synchronized to the incoming pattern. When 1, the receive pattern generator is not synchronized to the incoming pattern.

Register Name: BSRL

Register Description: BERT Status Register Latched

Register Address: EEh

Bit#	7	6	5	4	3	2	1	0
Name					<u>PMSL</u>	BEL	BECL	<u>OOSL</u>
Default	0	0	0	0	0	0	0	0

Bit 3/ Performance Monitoring Update Status Latched (PMSL) – This bit is set when the PMS bit transitions from 0 to 1.

Bit 2/ Bit Error Latched (BEL) – This bit is set when a bit error is detected.

Bit 1/ Bit Error Count Latched (BECL) – This bit is set when the BEC bit transitions from 0 to 1.

Bit 0/ Out Of Synchronization Latched (OOSL) - This bit is set when the OOS bit changes state.

Register Name: BSRIE

Register Description: BERT Status Register Interrupt Enable

Register Address: F0h

Bit#	7	6	5	4	3	2	1	0
Name					PMSIE	BEIE	BECIE	OOSIE
Default	0	0	0	0	0	0	0	0

Bit 3/ Performance Monitoring Update Status Interrupt Enable (PMSIE) – This bit enables an interrupt if the PMSL bit is set.

0 = interrupt disabled

1 = interrupt enabled

Bit 2/ Bit Error Interrupt Enable (BEIE) - This bit enables an interrupt if the BEL bit is set.

0 = interrupt disabled

1 = interrupt enabled

Bit 1/ Bit Error Count Interrupt Enable (BECIE) - This bit enables an interrupt if the BECL bit is set.

0 = interrupt disabled

1 = interrupt enabled

Bit 0/ Out Of Synchronization Interrupt Enable (OOSIE) - This bit enables an interrupt if the OOSL bit is set.

0 = interrupt disabled

1 = interrupt enabled

Register Name: RBECR1

Register Description: Receive Bit Error Count Register #1

Register Address: F4h

Bit #	7	6	5	4	3	2	1	0
Name	BEC7	BEC6	BEC5	BEC4	BEC3	BEC2	BEC1	BEC0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Bit Error Count (BEC[7:0])

Register Name: RBECR2

Register Description: Receive Bit Error Count Register #2

Register Address: F5h

Bit#	7	6	5	4	3	2	1	0
Name	BEC15	BEC14	BEC13	BEC12	BEC11	BEC10	BEC9	BEC8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Bit Error Count (BEC[15:8])

Register Name: RBECR3

Register Description: Receive Bit Error Count Register #3

Register Address: F6h

Bit#	7	6	5	4	3	2	1	0
Name	BEC23	BEC22	BEC21	BEC20	BEC19	BEC18	BEC17	BEC16
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Bit Error Count (BEC[23:16])

Bit Error Count (BEC[23:0]) – These twenty-four bits indicate the number of bit errors detected in the incoming data stream. This count stops incrementing when it reaches a count of FF FFFFh. The associated bit error counter will not incremented when an OOS condition exists.

Register Name: RBCR1

Register Description: Receive Bit Count Register #1

Register Address: F8h

Bit#	7	6	5	4	3	2	1	0
Name	BC7	BC6	BC5	BC4	BC3	BC2	BC1	BC0
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Bit Count (BC[7:0])

Register Name: RBCR2

Register Description: Receive Bit Count Register #2

Register Address: F9h

Bit#	7	6	5	4	3	2	1	0
Name	BC15	BC14	BC13	BC12	BC11	BC10	BC9	BC8
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Bit Count (BC[15:8])

Register Name: RBCR3

Register Description: Receive Bit Count Register #3

Register Address: FAh

Bit#	7	6	5	4	3	2	1	0
Name	BC23	BC22	BC21	BC20	BC19	BC18	BC17	BC16
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Bit Count (BC[23:16])

Register Name: RBCR4

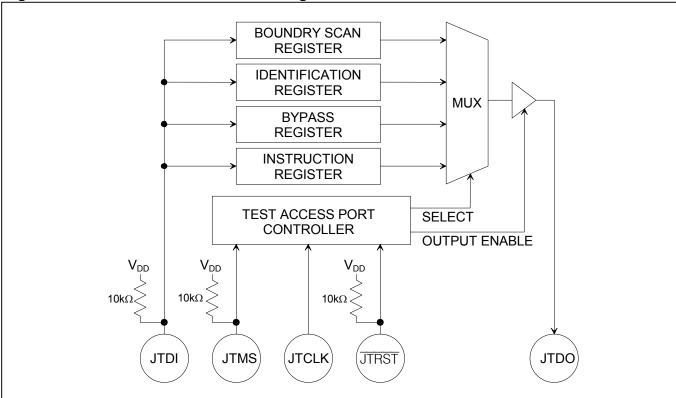
Register Description: Receive Bit Count Register #4

Register Address: FBh

Bit#	15	14	13	12	11	10	9	8
Name	BC31	BC30	BC29	BC28	BC27	BC26	BC25	BC24
Default	0	0	0	0	0	0	0	0

Bits 7 to 0: Bit Count (BC[31:24])

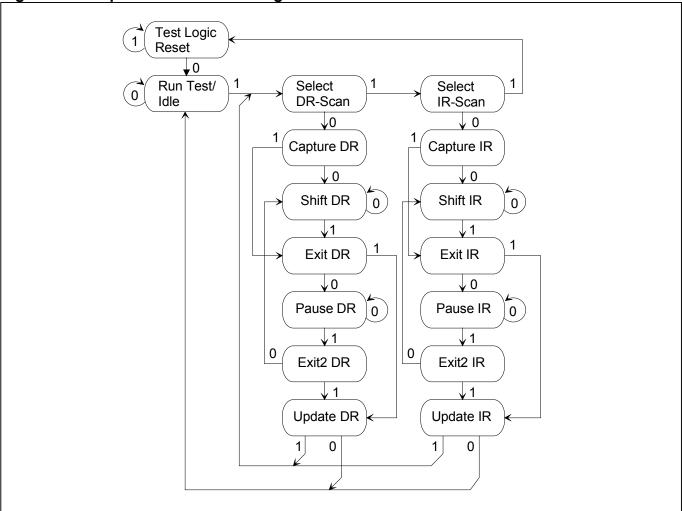
Bit Count (BC[31:0]) – These thirty-two bits indicate the number of bits in the incoming data stream. This count stops incrementing when it reaches a count of FFFF FFFFh. The associated bit counter will not incremented when an OOS condition exists.


14 JTAG BOUNDARY SCAN ARCHITECTURE AND TEST ACCESS PORT

The DS26556 JTAG port supports the standard instruction codes SAMPLE/PRELOAD, BYPASS, and EXTEST. Optional public instructions included are HIGHZ, CLAMP, and IDCODE. The DS26556 contains the following, as required by IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture:

Test Access Port (TAP) TAP Controller Instruction Register Bypass Register Boundary Scan Register Device Identification Register

The Test Access Port has the necessary interface pins $\overline{\text{JTRST}}$, JTCLK, JTMS, JTDI, and JTDO. See the pin descriptions for details.



14.1 TAP Controller State Machine

The TAP controller is a finite state machine that responds to the logic level at JTMS on the rising edge of JTCLK. See <u>Figure 14-2</u>.

Figure 14-2 Tap Controller State Diagram

Test-Logic-Reset

Upon power up, the TAP Controller will be in the Test-Logic-Reset state. The Instruction register will contain the IDCODE instruction. All system logic of the device will operate normally.

Run-Test-Idle

The Run-Test-Idle is used between scan operations or during specific tests. The Instruction register and test registers will remain idle.

Select-DR-Scan

All test registers retain their previous state. With JTMS LOW, a rising edge of JTCLK moves the controller into the Capture-DR state and will initiate a scan sequence. JTMS HIGH during a rising edge on JTCLK moves the controller to the Select-IR-Scan state.

Capture-DR

Data may be parallel-loaded into the test data registers selected by the current instruction. If the instruction does not call for a parallel load or the selected register does not allow parallel loads, the test register will remain at its current

value. On the rising edge of JTCLK, the controller will go to the Shift-DR state if JTMS is LOW or it will go to the Exit1-DR state if JTMS is HIGH.

Shift-DR

The test data register selected by the current instruction will be connected between JTDI and JTDO and will shift data one stage towards its serial output on each rising edge of JTCLK. If a test register selected by the current instruction is not placed in the serial path, it will maintain its previous state.

Exit1-DR

While in this state, a rising edge on JTCLK will put the controller in the Update-DR state, which terminates the scanning process, if JTMS is HIGH. A rising edge on JTCLK with JTMS LOW will put the controller in the Pause-DR state.

Pause-DR

Shifting of the test registers is halted while in this state. All test registers selected by the current instruction will retain their previous state. The controller will remain in this state while JTMS is LOW. A rising edge on JTCLK with JTMS HIGH will put the controller in the Exit2-DR state.

Exit2-DR

A rising edge on JTCLK with JTMS HIGH while in this state will put the controller in the Update-DR state and terminate the scanning process. A rising edge on JTCLK with JTMS LOW will enter the Shift-DR state.

Update-DR

A falling edge on JTCLK while in the Update-DR state will latch the data from the shift register path of the test registers into the data output latches. This prevents changes at the parallel output due to changes in the shift register.

Select-IR-Scan

All test registers retain their previous state. The instruction register will remain unchanged during this state. With JTMS LOW, a rising edge on JTCLK moves the controller into the Capture-IR state and will initiate a scan sequence for the instruction register. JTMS HIGH during a rising edge on JTCLK puts the controller back into the Test-Logic-Reset state.

Capture-IR

The Capture-IR state is used to load the shift register in the instruction register with a fixed value. This value is loaded on the rising edge of JTCLK. If JTMS is HIGH on the rising edge of JTCLK, the controller will enter the Exit1-IR state. If JTMS is LOW on the rising edge of JTCLK, the controller will enter the Shift-IR state.

Shift-IR

In this state, the shift register in the instruction register is connected between JTDI and JTDO and shifts data one stage for every rising edge of JTCLK towards the serial output. The parallel register and all test registers remain at their previous states. A rising edge on JTCLK with JTMS HIGH will move the controller to the Exit1-IR state. A rising edge on JTCLK with JTMS LOW will keep the controller in the Shift-IR state while moving data one stage thorough the instruction shift register.

Exit1-IR

A rising edge on JTCLK with JTMS LOW will put the controller in the Pause-IR state. If JTMS is HIGH on the rising edge of JTCLK, the controller will enter the Update-IR state and terminate the scanning process.

Pause-IR

Shifting of the instruction shift register is halted temporarily. With JTMS HIGH, a rising edge on JTCLK will put the controller in the Exit2-IR state. The controller will remain in the Pause-IR state if JTMS is LOW during a rising edge on JTCLK.

Exit2-IR

A rising edge on JTCLK with JTMS LOW will put the controller in the Update-IR state. The controller will loop back to Shift-IR if JTMS is HIGH during a rising edge of JTCLK in this state.

Update-IR

The instruction code shifted into the instruction shift register is latched into the parallel output on the falling edge of JTCLK as the controller enters this state. Once latched, this instruction becomes the current instruction. A rising edge on JTCLK with JTMS LOW puts the controller in the Run-Test-Idle state. With JTMS HIGH, the controller enters the Select-DR-Scan state.

14.2 Instruction Register

The instruction register contains a shift register as well as a latched parallel output and is 3 bits in length. When the TAP controller enters the Shift-IR state, the instruction shift register will be connected between JTDI and JTDO. While in the Shift-IR state, a rising edge on JTCLK with JTMS LOW will shift the data one stage towards the serial output at JTDO. A rising edge on JTCLK in the Exit1-IR state or the Exit2-IR state with JTMS HIGH will move the controller to the Update-IR state. The falling edge of that same JTCLK will latch the data in the instruction shift register to the instruction parallel output. Instructions supported by the DS26556 and its respective operational binary codes are shown in Table 14-1.

Table 14-1 Instruction Codes for IEEE 1149.1 Architecture

INSTRUCTION	SELECTED REGISTER	INSTRUCTION CODES
SAMPLE/PRELOAD	Boundary Scan	010
BYPASS	Bypass	111
EXTEST	Boundary Scan	000
CLAMP	Bypass	011
HIGHZ	Bypass	100
IDCODE	Device Identification	001

SAMPLE/PRELOAD

This is a mandatory instruction for the IEEE 1149.1 specification. This instruction supports two functions. The digital I/Os of the device can be sampled at the boundary scan register without interfering with the normal operation of the device by using the Capture-DR state. SAMPLE/PRELOAD also allows the device to shift data into the boundary scan register via JTDI using the Shift-DR state.

BYPASS

When the BYPASS instruction is latched into the parallel instruction register, JTDI connects to JTDO through the one-bit bypass test register. This allows data to pass from JTDI to JTDO not affecting the device's normal operation.

EXTEST

This allows testing of all interconnections to the device. When the EXTEST instruction is latched in the instruction register, the following actions occur. Once enabled via the Update-IR state, the parallel outputs of all digital output pins will be driven. The boundary scan register will be connected between JTDI and JTDO. The Capture-DR will sample all digital inputs into the boundary scan register.

CLAMP

All digital outputs of the device will output data from the boundary scan parallel output while connecting the bypass register between JTDI and JTDO. The outputs will not change during the CLAMP instruction.

HIGHZ

All digital outputs of the device will be placed in a high-impedance state. The BYPASS register will be connected between JTDI and JTDO.

IDCODE

When the IDCODE instruction is latched into the parallel instruction register, the identification test register is selected. The device identification code will be loaded into the identification register on the rising edge of JTCLK following entry into the Capture-DR state. Shift-DR can be used to shift the identification code out serially via JTDO. During Test-Logic-Reset, the identification code is forced into the instruction register's parallel output. The ID code

will always have a '1' in the LSB position. The next 11 bits identify the manufacturer's JEDEC number and number of continuation bytes followed by 16 bits for the device and 4 bits for the version.

Table 14-2 ID Code Structure

MSB			LSB (Must be '1')
Version (contact factory)	Device ID (0038h)	JEDEC	1
4 bits	000000000111000	00010100001	1

14.3 Test Registers

IEEE 1149.1 requires a minimum of two test registers—the bypass register and the boundary scan register. An optional test register, the identification register, has been included with the DS26556 design. The identification register is used in conjunction with the IDCODE instruction and the Test-Logic-Reset state of the TAP controller.

Boundary Scan Register

This register contains a shift register path and a latched parallel output for all control cells and digital I/O cells. It is n bits in length.

Bypass Register

The bypass register is a single one-bit shift register used with the BYPASS, CLAMP, and HIGHZ instructions, which provide a short path between JTDI and JTDO.

Identification Register

The identification register contains a 32-bit shift register and a 32-bit latched parallel output. This register is selected during the IDCODE instruction and when the TAP controller is in the Test-Logic-Reset state.

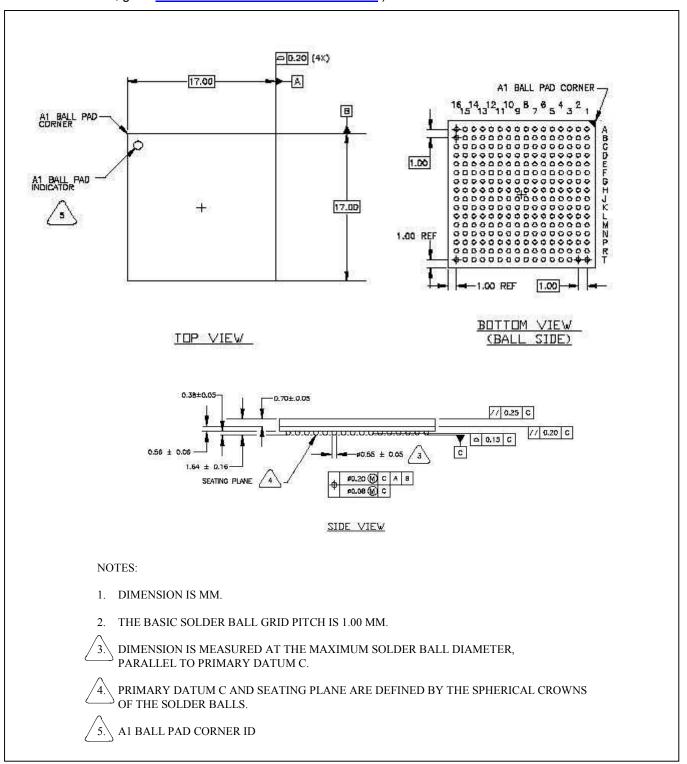

15 PIN ASSIGNMENT

Figure 15-1 DS26556 Pin Assignments—256-Lead BGA

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Α	TTIP1	STTIP1	TRING1	TSERI1	RSYNC2	TCLK2	ADDR7	ADDR4	REFCLK	DATA4	WR	TADR0	TADR4	RDXA3	NC	RDXA4
В	TVDD1	TVSS1	STRING1	RCHMRK1	RSER2	TCHMRK2	ADDR8	ADDR3	ADDR0	DATA5	CS	INT	TADR2	NC	RDXA2	TDXA3
С	RTIP1	RRING1	TSYNC1	RCLK01	TCLK1	RCHMRK2	ADDR9	ADDR5	MCLK	DATA3	RD	TPAR	TEN	TDXA2	TDXA1	TSPA
D	RVDD1	RVSS1	RSYNC1	GTEST1	TSERO1	TSERO2	ADDR10	ADDR2	BPCLK	DATA2	BTS	TADR3	TDAT9	REN	RDXA1	TSCLK
Е	RVDD2	RVSS2	TSYNC2	GTEST2	RSER1	RCLKO2	ADDR11	ADDR6	DATA7	DATA1	TADR1	TDAT8	RERR	VSS	RVAL	NC
F	RTIP2	RRING2	TSERI2	RLOS1	RLOF_LOTC1	TCHMRK1	ADDR12	ADDR1	DATA6	DATA0	TDXA4	RSOX	RMOD	TMOD	RPAR	RDAT0
G	TVDD2	TVSS2	STRING2	RLOF_LOTC2	VDD	VDD	VDD	VDD	VDD	VDD	VDD	VDD	RDAT11	NC	REOP	RDAT2
н	TTIP2	STTIP2	TRING2	RLOS2	VDD	VDD	VDDCC	VSSCC	VDD	VDD	VDD	RDAT14	RDAT15	RSCLK	NC	RDAT1
J	TTIP3	STTIP3	TRING3	RM_RFSYNC1	VSS	VSS	VDD	VSS	VSS	VSS	VSS	RADR4	RDAT6	RDAT5	NC	RDAT4
Κ	TVDD3	TVSS3	STRING3	RM_RFSYNC2	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	RADR3	NC	RDAT10	RDAT3
L	RTIP3	RRING3	RLOS4	RM_RFSYNC4	RM_RFSYNC3	RLOF_LOTC3	RCLKO4	RSYNC3	TTEST1	HRSIG	RLCD4	TDAT6	TDAT4	TDAT14	RDAT9	RDAT8
М	RVDD3	RVSS3	HIZ	RLOS3	TXENABLE	TSERO4	RCLK03	TTEST3	HSYSCLK	JTDO	ROCD1	TDAT15	TDAT5	TDAT13	RDAT13	RDAT7
N	RVDD4	RVSS4	TCLK3	RLOF_LOTC4	TCHMRK4	RCHMRK3	RSER3	TTEST2	HSSYNC	JTDI	RLCD3	TERR	TDAT7	ROCD3	RADR0	RDAT12
Р	RTIP4	RRING4	TCHMRK3	TCLK4	TSYNC4	TSERO3	RTEST3	SCAN_EN	HTSIG	JTRST	RLCD2	TSOX	TDAT10	ROCD2	RADR1	RADR2
R	TVDD4	TVSS4	STRING4	TSERI4	RSYNC4	TSYNC3	RTEST1	RESET	HRDATA	JTCLK	ROCD4	TSX	TDAT12	NC	TDAT0	TDAT3
T	TTIP4	STTIP4	TRING4	RCHMRK4	RSER4	TSERI3	RTEST2	SCAN_MODE	HTDATA	JTMS	RLCD1	TEOP	TDAT11	TDAT1	NC	TDAT2

16 PACKAGE MECHANICAL INFORMATION

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/DallasPackInfo.)

17 PACKAGE THERMAL INFORMATION

Table 17-1 Thermal Characteristics

PARAMETER	MIN	TYP	MAX
Ambient Temperature (Note 1)	-40°C	-	+85°C
Junction Temperature	-	=	+125°C
Theta-JA (θ _{JA}) in Still Air for 10mm CSBGA	-	17.5	-

Note 1: The package is mounted on a four-layer JEDEC standard test board.

Theta-JA (θ_{JA}) is the junction-to-ambient thermal resistance, when the package is mounted on a four-layer JEDEC standard test board. Note 2:

18 ABSOLUTE MAXIMUM RATINGS

Table 18-1 Absolute Maximum Ratings

Voltage Range on Any Pin Relative to Ground Operating Temperature Range for DS26556 Operating Temperature Range for DS26556N Storage Temperature Range Soldering Temperature -1.0V to +6.0V 0°C to +70°C -40°C to +85°C -55°C to +125°C See IPC/JEDEC J-STD-020 Standard

This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time can affect reliability.

Table 18-2 Recommended DC Operating Conditions

 $(T_A = 0^{\circ}\text{C to } +70^{\circ}\text{C for DS26556}; T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C for DS26556N.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logic 1	V _{IH}		2.0		5.5	V
Logic 0	V_{IL}		-0.3		+0.8	V
Supply	V_{DD}	(Note 1)	3.135	3.3	3.465	V

Table 18-3 Capacitance

 $(T_A = +25^{\circ}C)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS
Input Capacitance	CIN		5		рF
Output Capacitance	C _{OUT}		7		pF

Table 18-4 DC Operating Characteristics

 $(V_{DD}$ = 3.3V ±5%, T_A = 0°C to +70°C for DS26556; V_{DD} = 3.3V ±5%, T_A = -40°C to +85°C for DS26556N.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	I _{DD}	(Note 1)		300		mA
Input Leakage	I _{IL}	(Note 2)	-1.0		+1.0	μΑ
Output Leakage	I _{LO}	(Note 3)			1.0	μΑ
Output Current (2.4V)	I _{OH}		-1.0			mA
Output Current (0.4V)	I _{OL}		+4.0			mΑ

Note 1: Measured with all four ports operating in E1 LBO 0 mode with a 50% ones density and the system interface operating at 52MHz.

Note 2: $0.0V < V_{IN} < V_{DD}$.

Note 3: Applied to \overline{INT} when tri-stated.

19 AC TIMING

Unless otherwise noted, all timing numbers assume 25pF test load on output signals, 40pF test load on bus signals.

There are several common AC characteristic definitions. These generic definitions are shown below in <u>Figure 19-1</u>, <u>Figure 19-2</u>, <u>Figure 19-3</u>, and <u>Figure 19-4</u>. Definitions that are specific to a given interface are shown in that interface's subsection.

Figure 19-1 Clock Period and Duty Cycle Definitions

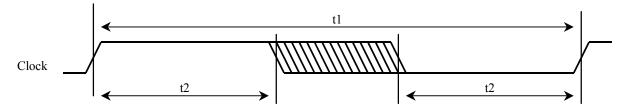


Figure 19-2 Rise Time, Fall Time, and Jitter Definitions

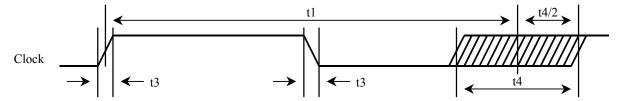


Figure 19-3 Hold, Setup, and Delay Definitions (Rising Clock Edge)

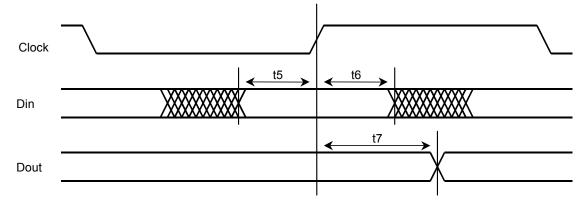


Figure 19-4 Hold, Setup, and Delay Definitions (Falling Clock Edge)

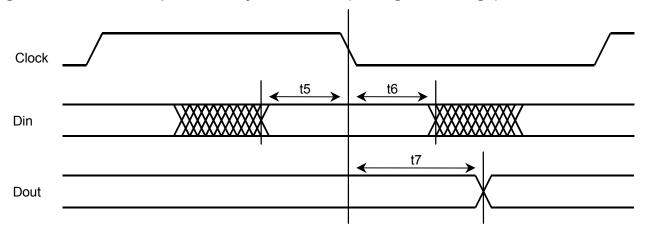
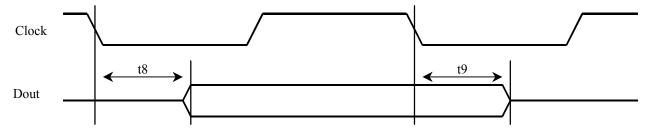



Figure 19-5 To/From High-Z Delay Definitions (Rising Clock Edge)

Figure 19-6 To/From High-Z Delay Definitions (Falling Clock Edge)

19.1 Transmit TDM Port AC Characteristics

All AC timing characteristics are specified with a 25 pF capacitive load on all output pins, V_{IH} = 2.4V and V_{IL} = 0.8V. The voltage threshold for all timing measurements is VDD/2. The generic timing definitions shown in <u>Figure 19-1</u>, <u>Figure 19-3</u>, and <u>Figure 19-6</u> apply to this interface.

Table 19-1 Transmit TDM Port Timing

 $(V_{DD} = 3.3V \pm 5\%, T_i = -40^{\circ}C \text{ to } +85^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
TCLK Period	t1	T1 mode		648		ns
TOLK Fellou	t1	E1 mode		488		ns
TCLK Clock Duty Cycle (t2/t1)	t2/t1		125			ns
TSERI, TSYNC to TCLK Setup Time	t5		20			ns
TCLK to TSERI, TSYNC Hold Time	t6		20			ns
TCLK to TSERO, TSYNC, TCHMRK Delay	t7				50	ns

19.2 Receive TDM Port AC Characteristics

All AC timing characteristics are specified with a 25 pF capacitive load on all output pins, V_{IH} = 2.4V and V_{IL} = 0.8V. The voltage threshold for all timing measurements is VDD/2. The generic timing definitions shown in <u>Figure 19-1</u>, <u>Figure 19-3</u>, and <u>Figure 19-6</u> apply to this interface.

Table 19-2 Receive TDM Port Timing

 $(V_{DD} = 3.3V \pm 5\%, T_i = -40^{\circ}C \text{ to } +85^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
RCLKO Period	t1	T1 mode		648		ns
NOLINO FEIIOU	t1	E1 mode		488		ns
RCLKO Clock Duty Cycle (t2/t1)	t2/t1		125			ns
RCLKO to RSER, RSYNC, RM_RFSYNC, RCHMRK Delay	t7				50	ns

19.3 High Speed Port AC Characteristics

All AC timing characteristics are specified with a 25 pF capacitive load on all output pins, V_{IH} = 2.4V and V_{IL} = 0.8V. The voltage threshold for all timing measurements is VDD/2. The generic timing definitions shown in <u>Figure 19-1</u>, <u>Figure 19-3</u>, and <u>Figure 19-6</u> apply to this interface.

Table 19-3 Receive TDM Port Timing

 $(V_{DD} = 3.3V \pm 5\%, T_i = -40^{\circ}C \text{ to } +85^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
HSYSCLK Period	t1	T1 mode	60			ns
TIST SCEN FEITOU	t1	E1 mode	60			ns
HSYSCLK Clock Duty Cycle (t2/t1)	t2/t1		30			ns
HTDATA, HTSIG, HSSYNC to HSYSCLK Setup Time	t5		20			ns
HSYSCLK to HTDATA, HTSIG, HSSYNC Hold Time	t6		20			ns
HSYSCLK to HRDATA, HRSIG, HSSYNC Delay	t7				50	ns

19.4 System Interface AC Characteristics

The generic timing definitions shown in <u>Figure 19-1</u>, <u>Figure 19-2</u>, <u>Figure 19-3</u>, and <u>Figure 19-6</u> apply to this interface.

Table 19-4 System Interface Level 2 Timing

 $(V_{DD} = 3.3V \pm 5\%, T_j = -40^{\circ}C \text{ to } +125^{\circ}C.)$

SIGNAL NAME(S)	SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
RSCLK and TSCLK	f1	Clock frequency (1/t1) (Note 1) 0 52		52	MHz	
RSCLK and TSCLK	t2/t1	Clock duty cycle (Note 1)	40	50	60	%
RSCLK and TSCLK	t3	Rise/fall times (Notes 1, 2)			2	ns
RADR and $\overline{\text{REN}}$	t5	Hold time from RSCLK (Note 1)	0			ns
RADR and $\overline{\text{REN}}$	t6	Setup time to RSCLK (Note 1)	3.5			ns
RDATA, RPRTY, RPXA, RSOX, REOP, RVAL, RMOD, and RERR	t7	Delay from RSCLK (Notes 1, 3)	2		12	ns
RDATA, RPRTY, RPXA, RSOX, REOP, RVAL, RMOD, and RERR	t8	From high-Z delay from RSCLK (Notes 1, 3)	2		12	ns
RDATA, RPRTY, RPXA, RSOX, REOP, RVAL, RMOD, and RERR	t9	To high-Z delay from RSCLK (Notes 1, 3)	2		15	ns
TDATA, TPRTY, TADR, TEN, TSOX, TEOP, TMOD, and TERR	t5	Hold time from TSCLK (Note 1)	0			ns
TDATA, TPRTY, TADR, TEN, TSOX, TEOP, TMOD, and TERR	t6	Setup time to TSCLK (Note 1)	3.5			ns
TPXA and TSPA	t7	Delay from TSCLK (Notes 1, 3)	2		12	ns
TPXA and TSPA	t8	From high-Z delay from TSCLK (Notes 1, 3)	2		12	ns
TPXA and TSPA	t9	To high-Z delay from TSCLK (Notes 1, 3)	2		15	ns

Note 1: The input/output timing reference level for all signals is $V_{DD}/2$.

Note 2: Rise and fall times are measured at output side with the output unloaded. Rise time is measured from 20% to 80% V_{OH}. Fall time is measured from 80% to 20% V_{OH}.

Note 3: These times are met with a 30pF, 300Ω load on the associated output pin.

Table 19-5 System Interface Level 3 Timing

(V_{DD} = 3.3V $\pm 5\%$, T_j = -40°C to +125°C.)

SIGNAL NAME(S)	SYMBOL	DESCRIPTION		TYP	MAX	UNITS	NOTES
RSCLK and TSCLK	f1	Clock Frequency (1/t1)			52	MHz	1
RSCLK and TSCLK	t2/t1	Clock Duty Cycle	40	50	60	%	1
RSCLK and TSCLK	t3	Rise/Fall Times			2	ns	1,2
RADR and REN	t5	Hold Time from RSCLK	0			ns	1
RADR and REN	t6	Setup Time to RSCLK	3.5			ns	1
RDATA, RPRTY, RPXA, RSOX, REOP, RVAL, RMOD, and RERR	t7	Delay from RSCLK	2		12	ns	1,3
TDATA, TPRTY, TADR, TEN, TSOX, TEOP, TMOD, and TERR	t5	Hold Time from TSCLK	0			ns	1
TDATA, TPRTY, TADR, TEN, TSOX, TEOP, TMOD, and TERR	t6	Setup Time to TSCLK	3.5			ns	1
TPXA and TSPA	t7	Delay from TSCLK	2		12	ns	1,3

 $\textbf{Note 1:} \qquad \text{The input/output timing reference level for all signals is VDD/2}.$

Note 2: Rise and fall times are measured at output side with the output unloaded. Rise time is measured from 20% to 80% V_{OH} . Fall time is measured from 80% to 20% V_{OH} .

Note 3: These times are met with a 30pF, 300Ω load on the associated output pin.

19.5 Microprocessor Bus AC Characteristics

Table 19-6 AC Characteristics—Microprocessor Bus Timing

 $(V_{DD}$ = 3.3V ±5%, T_A = 0°C to +70°C for DS26556; V_{DD} = 3.3V ± 5%, T_A = -40°C to +85°C for DS26556N.) (Figure 19-7, Figure 19-8, Figure 19-9, and Figure 19-10)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Setup Time for ADDR[12:0] Valid to CS Active	t1	(Note 1)	0			ns
Setup Time for $\overline{\text{CS}}$ Active to Either $\overline{\text{RD}}$ or $\overline{\text{WR}}$ Active	t2	(Note 1)	0			ns
Delay Time from Either $\overline{\text{RD}}$ or $\overline{\text{DS}}$ Active to D[7:0] Valid	t3				115	ns
Hold Time from Either $\overline{\text{RD}}$ or $\overline{\text{WR}}$ Inactive to $\overline{\text{CS}}$ Inactive	t4		0			ns
Hold Time from $\overline{\text{CS}}$ or $\overline{\text{RD}}$ or $\overline{\text{DS}}$ Inactive to DATA[7:0] Tri-State	t5		2.5		20	ns
Wait Time from WR Active to Latch Data	t6		35			ns
Data Set Up Time to WR Inactive	t7		10			ns
Data Hold Time from WR Inactive	t8		2			ns
Address Hold from WR Inactive	t9		3			ns
Write Access to Subsequent Write/Read Access Delay Time	t10		80			ns

Note 1: Guaranteed by design.

Figure 19-7 Intel Bus Read Timing (BTS = 0)

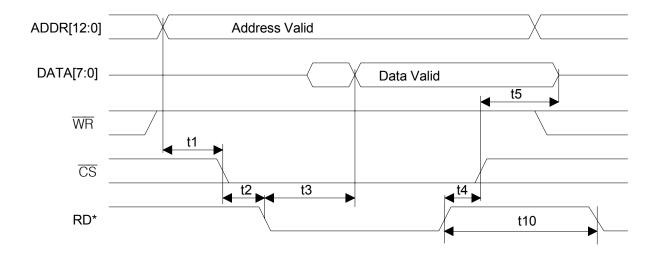


Figure 19-8 Intel Bus Write Timing (BTS = 0)

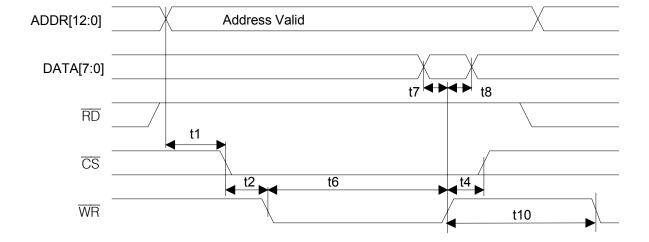


Figure 19-9 Motorola Bus Read Timing (BTS = 1)

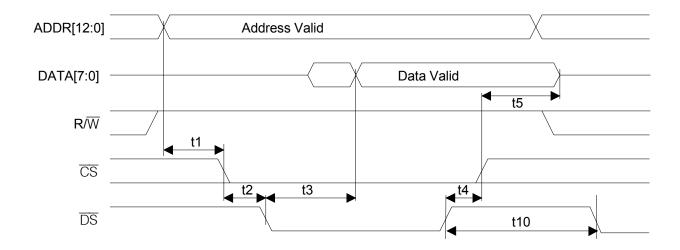
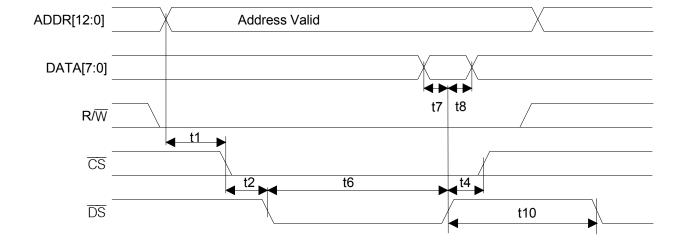



Figure 19-10 Motorola Bus Write Timing (BTS = 1)

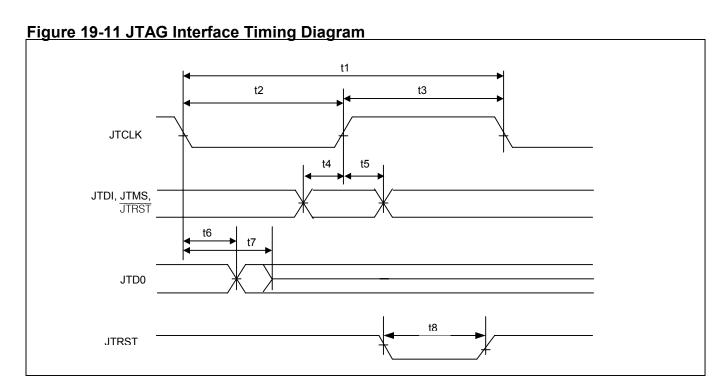

19.6 JTAG Interface Timing

Table 19-7 JTAG Interface Timing

 $(V_{DD} = 3.3V \pm 5\%, T_A = -40^{\circ}C \text{ to } +85^{\circ}C.) (Figure 19-11)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
JTCLK Clock Period	t1			1000		ns
JTCLK Clock High/Low Time	t2/t3	(Note 1)	50	500		ns
JTCLK to JTDI, JTMS Setup Time	t4		3			ns
JTCLK to JTDI, JTMS Hold Time	t5		2			ns
JTCLK to JTDO Delay	t6		2		50	ns
JTCLK to JTDO High-Z Delay	t7		2		50	ns
JTRST Width Low Time	t8		100	•		ns

Note 1: Clock can be stopped high or low.

20 REVISION CHANGE HISTORY

DATE	DESCRIPTION		
012105	New Product Release		